tf$keras$callbacks
tf$keras$callbacks
tf$keras로 training 중에 , 동작을 확장/수정하고자 모델로 전달하는 객체
그 중 유용한 callback.
- tf$keras$callbacks$ModelCheckpoint
- tf$keras$callbacks$LearningRateScheduler
- tf$keras$callbacks$EarlyStopping
- tf$keras$callbacks$TensorBoard
model & weight 저장
source(file.path(getwd(),"../00.global_dl.R")) # https://tensorflow.rstudio.com/guide/tfdatasets/introduction/ # devtools::install_github("rstudio/tfdatasets") library(tensorflow) library(tfautograph) library(keras) library(tfdatasets) mnist <- dataset_mnist() c(c(train_imgData, train_labels), c(test_imgData, test_labels)) %<-% mnist IMG_ROWS <- 28; IMG_COLS <- 28 train_x <- train_imgData %>% array_reshape(dim=c(nrow(train_imgData), IMG_ROWS*IMG_COLS)) test_x <- test_imgData %>% array_reshape(dim=c(nrow(test_imgData), IMG_ROWS*IMG_COLS)) train_x <- train_x / 255 test_x <- test_x / 255 train_y <- to_categorical(train_labels, 10) test_y <- to_categorical(test_labels, 10) model <- keras_model_sequential() %>% layer_dense(units=512, activation="relu", input_shape=c(28*28)) %>% layer_dense(units=10, activation="softmax") model %>% compile( optimizer = "rmsprop", loss = "categorical_crossentropy", metrics = c("accuracy") ) BATCH_SIZE <- 128 EPOCHS <- 10 history <- model %>% fit( train_x, train_y, batch_size = BATCH_SIZE, epochs = EPOCHS, validation_split = 0.2 ) metrics <- model %>% evaluate(test_x, test_y) model.save_weights('./') save_model_weights_tf(model, './weights/my_model') load_model_weights_tf(model, './weights/my_model')
tf$data$dataset
import tensorflow as tf import tensorflow_datasets as tfds builders=tfds.list_builders() print(builders) data, info = tfds.load("mnist", with_info=True) train_data, test_data = data['train'], data['test'] print(info) print(train_data)
source('/home/sixx_skcc/RCODE/00.global_dl.R') # https://tensorflow.rstudio.com/guide/tfdatasets/introduction/ # devtools::install_github("rstudio/tfdatasets") library(tfdtasets) mnist <- dataset_mnist() c(c(train_imgData, train_labels), c(test_imgData, test_labels)) %<-% mnist train_imgData <- mnist$train$x train_labels <- mnist$train$y test_imgData <- mnist$test$x test_labels <- mnist$test$y