Nuclio 모델배포 : mmdetect
Main.py
main.py를 만들기 위해 참고할 inference코드
inference demo
main.py의 handler작성을 위해 inference demo확인
– init_detector
– inference_detector
import warnings from pathlib import Path import numpy as np import torch import mmcv from mmcv.ops import RoIPool from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from mmcv.runner import load_checkpoint from mmdet.core import get_classes from mmdet.datasets import replace_ImageToTensor from mmdet.datasets.pipelines import Compose from mmdet.models import build_detector from mmdet.apis import init_detector from mmdet.apis import inference_detector from mmdet.apis import show_result_pyplot import os INPUT_IMG = "./imgs/demo.jpg" OUTPUT_FILE = "./imgs/demo_out.jpg" CONFIG = [os.path.join('./param', filenm) for filenm in os.listdir('./param') if filenm.endswith('.py')][0] CHKPNT = [os.path.join('./param', filenm) for filenm in os.listdir('./param') if filenm.endswith('.pth')][0] # ROOT = "/home/oschung_skcc/my/git/mmdetection/" # CONFIG = os.path.join(ROOT, "sixxconfigs/faster_rcnn_r50_fpn_1x_coco_001.py") # CHECKPOINT = os.path.join(ROOT, "checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth") SCORE_THRESHOLD = 0.9 DEVICE = "cuda:6" PALETTE = "coco" # choices=['coco', 'voc', 'citys', 'random'] # def parse_args(): # parser = ArgumentParser() # parser.add_argument('img', help='Image file') # parser.add_argument('config', help='Config file') # parser.add_argument('checkpoint', help='Checkpoint file') # parser.add_argument('--out-file', default=None, help='Path to output file') # parser.add_argument('--device', default='cuda:0', help='Device used for inference') # parser.add_argument('--palette', default='coco', choices=['coco', 'voc', 'citys', 'random'], help='Color palette used for visualization') # parser.add_argument('--score-thr', type=float, default=0.3, help='bbox score threshold') # parser.add_argument('--async-test', action='store_true', help='whether to set async options for async inference.') # args = parser.parse_args() # return args import yaml FYAML = "./function.yaml" with open(FYAML, 'rb') as function_file: functionconfig = yaml.safe_load(function_file) labels_spec = functionconfig['metadata']['annotations']['spec'] classes = eval(labels_spec) # classes = [ # { "id": 1, "name": "person" }, # { "id": 2, "name": "bicycle" }, # { "id": 3, "name": "car" }, # ... # { "id":88, "name": "teddy_bear" }, # { "id":89, "name": "hair_drier" }, # { "id":90, "name": "toothbrush" } # ] if __name__ == '__main__': # build the MODEL from a config file & a checkpoint file model = init_detector(CONFIG, CHKPNT, device=DEVICE) # test a single image result = inference_detector(model, INPUT_IMG) # show the results show_result_pyplot(model, INPUT_IMG, result, palette = PALETTE, score_thr = SCORE_THRESHOLD, ) #----------------------------------------------------------------- img = mmcv.imread(INPUT_IMG) if isinstance(result, tuple): bbox_result, segm_result = result if isinstance(segm_result, tuple): segm_result = segm_result[0] # discard the `dim` else: bbox_result, segm_result = result, None img = img.copy() bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) scores = bboxes[:, -1] inds = scores > SCORE_THRESHOLD bboxes = bboxes[inds, :] # points labels = labels[inds] # label scores = scores[inds] # confidence encoded_results = [] if bboxes.shape[0] > 0: for i in range(bboxes.shape[0]): encoded_results.append({ 'confidence': scores[i], 'label': classes[labels[i]]['name'], 'points': bboxes[i].tolist(), 'type': 'rectangle' }) print(encoded_results)
2. 로컬에서 DL모델을 실행하기 위한 소스코드를 Nuclio 플랫폼에 적용
2-1 모델을 메모리에 로딩 (init_context(context)함수를 사용하여)
2-2 아래 프로세스를 위해 handler에 entry point를 정의하고, main.py에 넣는다.
- accept incoming HTTP requests
- run inference
- reply with detection results
# Copyright onesixx. All rights reserved. CONFIG = '/opt/nuclio/param/faster_rcnn_r50_fpn_1x_coco_001.py' CHKPNT = '/opt/nuclio/param/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' FYAML = "/opt/nuclio/function.yaml" SCORE_THRESHOLD = 0.9 DEVICE = "cpu" #"cuda:6" PALETTE = "coco" import os import mmcv from mmdet.apis import init_detector from mmdet.apis import inference_detector import io import base64 from PIL import Image import numpy as np import yaml import json #from model_loader import ModelLoader # For TEST # CONFIG = [os.path.join("./param", filenm) for filenm in os.listdir('./param') if filenm.endswith('.py')][0] # CHKPNT = [os.path.join("./param", filenm) for filenm in os.listdir('./param') if filenm.endswith('.pth')][0] # FYAML = "./function.yaml" with open(FYAML, 'rb') as function_file: functionconfig = yaml.safe_load(function_file) labels_spec = functionconfig['metadata']['annotations']['spec'] classes = eval(labels_spec) # classes = [ { "id": 1, "name": "person" },...] def init_context(context): context.logger.info("Init context... 0%") # -------------------------------- model_handler = init_detector(CONFIG, CHKPNT, device=DEVICE) #model_handler = ModelLoader(classes) context.user_data.model = model_handler context.logger.info("Init context... 100%") # ------------------------------ def handler(context, event): context.logger.info("Run sixx model") data = event.body buf = io.BytesIO(base64.b64decode(data["image"])) # threshold = float(data.get("threshold", SCORE_THRESHOLD)) # context.user_data.model.conf = threshold # buf = './imgs/demo.jpg' image = Image.open(buf) imgArray = np.array(image) # result = inference_detector(model_handler, imgArray) result = inference_detector(context.user_data.model, imgArray) if isinstance(result, tuple): bbox_result, segm_result = result if isinstance(segm_result, tuple): segm_result = segm_result[0] # discard the `dim` else: bbox_result, segm_result = result, None img = image.copy() bboxes = np.vstack(bbox_result) labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) scores = bboxes[:, -1] inds = scores > SCORE_THRESHOLD scores = scores[inds] # confidence labels = labels[inds] # label bboxes = bboxes[inds, :] # points # if show_mask and segm_result is not None: # segms = mmcv.concat_list(segm_result) # segms = [segms[i] for i in np.where(inds)[0]] # if palette is None: # palette = color_val_iter() # colors = [next(palette) for _ in range(len(segms))] encoded_results = [] if bboxes.shape[0] > 0: for i in range(bboxes.shape[0]): encoded_results.append({ 'confidence': float(scores[i]), 'label': classes[labels[i]]['name'], 'points': bboxes[i][:4].tolist(), 'type': 'rectangle' }) return context.Response( body=json.dumps(encoded_results), headers={}, content_type='application/json', status_code=200 )
2. function.yaml
base dockerfile
$ pwd ~/my/git/mmdetection/docker $ docker build -t base.mmdet .
base docker 이미지를 기반으로 새로운 이미지 생성
metadata: name: mmdet-faster-rcnn-x namespace: cvat annotations: name: faster-rcnn-x type: detector framework: pytorch spec: | [ { "id": 1, "name": "person" }, { "id": 2, "name": "bicycle" }, { "id": 3, "name": "car" }, { "id": 4, "name": "motorcycle" }, { "id": 5, "name": "airplane" }, { "id": 6, "name": "bus" }, { "id": 7, "name": "train" }, { "id": 8, "name": "truck" }, { "id": 9, "name": "boat" }, { "id":10, "name": "traffic_light" }, { "id":11, "name": "fire_hydrant" }, { "id":13, "name": "stop_sign" }, { "id":14, "name": "parking_meter" }, { "id":15, "name": "bench" }, { "id":16, "name": "bird" }, { "id":17, "name": "cat" }, { "id":18, "name": "dog" }, { "id":19, "name": "horse" }, { "id":20, "name": "sheep" }, { "id":21, "name": "cow" }, { "id":22, "name": "elephant" }, { "id":23, "name": "bear" }, { "id":24, "name": "zebra" }, { "id":25, "name": "giraffe" }, { "id":27, "name": "backpack" }, { "id":28, "name": "umbrella" }, { "id":31, "name": "handbag" }, { "id":32, "name": "tie" }, { "id":33, "name": "suitcase" }, { "id":34, "name": "frisbee" }, { "id":35, "name": "skis" }, { "id":36, "name": "snowboard" }, { "id":37, "name": "sports_ball" }, { "id":38, "name": "kite" }, { "id":39, "name": "baseball_bat" }, { "id":40, "name": "baseball_glove" }, { "id":41, "name": "skateboard" }, { "id":42, "name": "surfboard" }, { "id":43, "name": "tennis_racket" }, { "id":44, "name": "bottle" }, { "id":46, "name": "wine_glass" }, { "id":47, "name": "cup" }, { "id":48, "name": "fork" }, { "id":49, "name": "knife" }, { "id":50, "name": "spoon" }, { "id":51, "name": "bowl" }, { "id":52, "name": "banana" }, { "id":53, "name": "apple" }, { "id":54, "name": "sandwich" }, { "id":55, "name": "orange" }, { "id":56, "name": "broccoli" }, { "id":57, "name": "carrot" }, { "id":58, "name": "hot_dog" }, { "id":59, "name": "pizza" }, { "id":60, "name": "donut" }, { "id":61, "name": "cake" }, { "id":62, "name": "chair" }, { "id":63, "name": "couch" }, { "id":64, "name": "potted_plant" }, { "id":65, "name": "bed" }, { "id":67, "name": "dining_table" }, { "id":70, "name": "toilet" }, { "id":72, "name": "tv" }, { "id":73, "name": "laptop" }, { "id":74, "name": "mouse" }, { "id":75, "name": "remote" }, { "id":76, "name": "keyboard" }, { "id":77, "name": "cell_phone" }, { "id":78, "name": "microwave" }, { "id":79, "name": "oven" }, { "id":80, "name": "toaster" }, { "id":81, "name": "sink" }, { "id":83, "name": "refrigerator" }, { "id":84, "name": "book" }, { "id":85, "name": "clock" }, { "id":86, "name": "vase" }, { "id":87, "name": "scissors" }, { "id":88, "name": "teddy_bear" }, { "id":89, "name": "hair_drier" }, { "id":90, "name": "toothbrush" } ] spec: description: faster-rcnn-x runtime: "python:3.8" handler: main:handler eventTimeout: 30s env: - name: MMDETECTION_PATH value: /opt/nuclio/mmdetection build: image: cvat/sixx.mm.fast baseImage: base.mmdet # base.me # competent_dubinsky directives: preCopy: - kind: USER value: root - kind: WORKDIR value: /opt/nuclio triggers: myHttpTrigger: maxWorkers: 2 kind: "http" workerAvailabilityTimeoutMilliseconds: 10000 attributes: maxRequestBodySize: 33554432 # 32MB platform: attributes: restartPolicy: name: always maximumRetryCount: 3 mountMode: volume
(부가적으로) 외부에서 해당 모델을 통해 접근을 위한 설정
nuclio function의 포트번호와 cvat network를 지정
spec.triggers.myHttpTrigger.attributes
에 특정 port를 추가하고, spec.platform.attributes
에 도커 컴포즈를 실행했을 때 생성된 도커 네트워크(cvat_cvat)를 추가.
triggers: myHttpTrigger: maxWorkers: 2 kind: 'http' workerAvailabilityTimeoutMilliseconds: 10000 attributes: maxRequestBodySize: 33554432 port: 33000 # 추가포트 platform: attributes: restartPolicy: name: always maximumRetryCount: 3 mountMode: volume network: cvat_cvat # 추가 도커네트웍
3. Model_handler.py
…
4. Nuclio에 Deploy
방법1)
$ nuctl deploy --project-name cvat \\ --path cvat/serverless/sixx/mmdet/faster_rcnn_x/nuclio/ \\ --volume `pwd`/serverless/common:/opt/nuclio/common \\ --platform local
방법2)
$ serverless/deploy_cpu.sh \\ serverless/pytorch/facebookresearch/detectron2/retinanet/
$ docker ps -a CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 264a2739eeb6 cvat/sixx.mm.fast:latest "conda run -n mmdet3…" 47 seconds ago Up 46 seconds (healthy) 0.0.0.0:49377->8080/tcp nuclio-nuclio-mmdet-faster-rcnn-x e71c29400634 gcr.io/iguazio/alpine:3.15 "/bin/sh -c '/bin/sl…" 5 hours ago Up 5 hours nuclio-local-storage-reader