pandas to_dict
df.to_dict(‘dict’, list,
‘split , ‘index’, ‘series’, ‘records’)
txt="John,20,student\ Jenny,30,developer\ Nate,30,teacher\ Julia,40,dentist\ Brian,45,manager\ Chris,25,intern\ " # name,age,job # John,20,student # Jenny,30,developer # Nate,30,teacher # Julia,40,dentist # Brian,45,manager # Chris,25,intern import pandas as pd from io import StringIO df = pd.read_csv(StringIO(txt), header=None) df.columns=['name','age','job']
[colNm for colNm in df] # ['name', 'age', 'job']
import pandas as pd data ='https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv' df = pd.read_csv(data) df.shape # rows × columns (142, 5) df.shape[0] # rows len(df) len(df.index) df.shape[1] len(df.columns) # columms df.size # cell 갯수 710 df.count() # Null아닌 열별 행갯수 df.to_dict() # type은 dict (row번호) len(df.to_dict()) # 5 df.to_dict('list') # type은 dict len(df.to_dict('list')) # 5 df.to_dict('split') # type은 dict len(df.to_dict('split')) # 3, index, columns, data df.to_dict('index') # type은 dict len(df.to_dict('index')) # 142 df.to_dict('records') # type은 list len(df.to_dict('records')) # 142
dff =df[0:2] # country\t pop\t continent\tlifeExp\t gdpPercap # 0\tAfghanistan\t31889923.0\tAsia \t43.828\t 974.580338 # 1\tAlbania\t 3600523.0\tEurope\t 76.423\t5937.029526 dff.shape #(2,5) dff.size # 10 dff.count() # Null아닌 열별 행갯수 # country 2 # pop 2 # continent 2 # lifeExp 2 # gdpPercap 2 # dtype: int64 dff.to_dict() # {'country': {0: 'Afghanistan', 1: 'Albania'}, # 'pop': {0: 31889923.0, 1: 3600523.0}, # 'continent': {0: 'Asia', 1: 'Europe'}, # 'lifeExp': {0: 43.828, 1: 76.423}, # 'gdpPercap': {0: 974.5803384, 1: 5937.029525999999}} dff.to_dict('list') # {'country': ['Afghanistan', 'Albania'], # 'pop': [31889923.0, 3600523.0], # 'continent': ['Asia', 'Europe'], # 'lifeExp': [43.828, 76.423], # 'gdpPercap': [974.5803384, 5937.029525999999]} dff.to_dict('records') # [{'country': 'Afghanistan', # 'pop': 31889923.0, # 'continent': 'Asia', # 'lifeExp': 43.828, # 'gdpPercap': 974.5803384}, # {'country': 'Albania', # 'pop': 3600523.0, # 'continent': 'Europe', # 'lifeExp': 76.423, # 'gdpPercap': 5937.029525999999}]