MMDetection-inference
MMDection 설치
– MMCV가 먼저 설치되어 있어야 함 .(pip를 통해 mmcv-full 설치)
– mmdetection.git을 clone 하고, setyp.py를 통해 설치
Inference 수행 (Pretrained 모델을 활용)
이미지
https://github.com/open-mmlab/mmdetection/blob/master/demo/MMDet_Tutorial.ipynb 데모아래 튜토리얼 참조
Config와 Checkpoint(모델) 다운로드
- 해당Backbone의 Config파일 설정
mmdetection/configs/faster_rcnn/ - pre-trained model 다운로드
/mmdetection/checkpoints/ 아래에 해당 파일 다운.
config_file = './mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' checkpoint_file = './mmdetection/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' model = init_detector( config_file, checkpoint_file, device='cuda:6' ) # Model loading from config and pretrained # model.__dict__ # print(model.cfg.pretty_text)
img = './data/rose.jpg' # img_arr = cv2.imread(img) # img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB) result = inference_detector(model, img) # class 80개에 대한 80 length의 List # result[39] # model.CLASSES[39] show_result_pyplot(model, img, results) # (class confidence) score threadhold 0.3
비디오
https://github.com/open-mmlab/mmdetection/blob/master/demo/video_demo.py 데모아래 참조
config_file = './mmdetection/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py' checkpoint_file = './mmdetection/checkpoints/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' model = init_detector(config_file, checkpoint_file, device='cuda:6') # Model loading from config and pretrained # model.__dict__ # print(model.cfg.pretty_text)
# img_arr = cv2.imread(img) # img_arr = cv2.cvtColor(img_arr, cv2.COLOR_BGR2RGB) result = inference_detector(model, img) # class 80개에 대한 80 length의 List # result[39] # model.CLASSES[39] show_result_pyplot(model, img, results) # (class confidence) score threadhold 0.3