mmdet train in sixxtools
~/my/git/mmdetection/tools ==> sixxtools
$ python sixxtools/train.py \\ "sixxconfigs/cascade_rcnn_r50_fpn_1x_coco.py" \\ --work-dir "work_dirs/ttt"
epoch_69.pth (PyTorch Model)이 생성된다.
/home/oschung_skcc/my/git/mmdetection/mmdet/utils/setup_env.py:38: UserWarning: Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. warnings.warn( /home/oschung_skcc/my/git/mmdetection/mmdet/utils/setup_env.py:48: UserWarning: Setting MKL_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. warnings.warn( 2022-12-05 15:47:21,645 - mmdet - INFO - Distributed training: False 2022-12-05 15:47:21,646 - mmdet - INFO - Set random seed to 255440651, deterministic: False 2022-12-05 15:47:21,646 - mmdet - INFO - sixx >>> detector model::------------------------------------------------------------ 2022-12-05 15:47:22,278 - mmdet - INFO - initialize ResNet with init_cfg {'type': 'Pretrained', 'checkpoint': 'torchvision://resnet50'} 2022-12-05 15:47:22,279 - mmcv - INFO - load model from: torchvision://resnet50 2022-12-05 15:47:22,279 - mmcv - INFO - load checkpoint from torchvision path: torchvision://resnet50 2022-12-05 15:47:22,360 - mmcv - WARNING - The model and loaded state dict do not match exactly unexpected key in source state_dict: fc.weight, fc.bias 2022-12-05 15:47:22,383 - mmdet - INFO - initialize FPN with init_cfg {'type': 'Xavier', 'layer': 'Conv2d', 'distribution': 'uniform'} 2022-12-05 15:47:22,409 - mmdet - INFO - initialize RPNHead with init_cfg {'type': 'Normal', 'layer': 'Conv2d', 'std': 0.01} 2022-12-05 15:47:22,414 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'distribution': 'uniform', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}] 2022-12-05 15:47:22,633 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'distribution': 'uniform', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}] 2022-12-05 15:47:22,856 - mmdet - INFO - initialize Shared2FCBBoxHead with init_cfg [{'type': 'Normal', 'std': 0.01, 'override': {'name': 'fc_cls'}}, {'type': 'Normal', 'std': 0.001, 'override': {'name': 'fc_reg'}}, {'type': 'Xavier', 'distribution': 'uniform', 'override': [{'name': 'shared_fcs'}, {'name': 'cls_fcs'}, {'name': 'reg_fcs'}]}] 2022-12-05 15:47:23,098 - mmdet - INFO - sixx >>> dateset::------------------------------------------------------------ loading annotations into memory... Done (t=0.00s) creating index... index created! loading annotations into memory... Done (t=0.00s) creating index... index created! 2022-12-05 15:47:23,153 - mmdet - INFO - sixx >>> train detector::------------------------------------------------------------ 2022-12-05 15:47:24,568 - mmdet - INFO - Automatic scaling of learning rate (LR) has been disabled. loading annotations into memory... Done (t=0.00s) creating index... index created! 2022-12-05 15:47:25,086 - mmdet - INFO - load checkpoint from local path: checkpoints/cascade_rcnn_r50_fpn_1x_coco_20200316-3dc56deb.pth 2022-12-05 15:47:25,271 - mmdet - WARNING - The model and loaded state dict do not match exactly size mismatch for roi_head.bbox_head.0.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([6, 1024]). size mismatch for roi_head.bbox_head.0.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([6]). size mismatch for roi_head.bbox_head.1.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([6, 1024]). size mismatch for roi_head.bbox_head.1.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([6]). size mismatch for roi_head.bbox_head.2.fc_cls.weight: copying a param with shape torch.Size([81, 1024]) from checkpoint, the shape in current model is torch.Size([6, 1024]). size mismatch for roi_head.bbox_head.2.fc_cls.bias: copying a param with shape torch.Size([81]) from checkpoint, the shape in current model is torch.Size([6]). 2022-12-05 15:47:25,283 - mmdet - INFO - Start running, host: oschung_skcc@SKCCBMS20GS01, work_dir: /home/oschung_skcc/my/git/mmdetection/work_dirs/ttt 2022-12-05 15:47:25,284 - mmdet - INFO - Hooks will be executed in the following order: before_run: (VERY_HIGH ) CosineAnnealingLrUpdaterHook (NORMAL ) CheckpointHook (LOW ) EvalHook (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook -------------------- before_train_epoch: (VERY_HIGH ) CosineAnnealingLrUpdaterHook (NORMAL ) NumClassCheckHook (LOW ) IterTimerHook (LOW ) EvalHook (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook -------------------- before_train_iter: (VERY_HIGH ) CosineAnnealingLrUpdaterHook (LOW ) IterTimerHook (LOW ) EvalHook -------------------- after_train_iter: (ABOVE_NORMAL) OptimizerHook (NORMAL ) CheckpointHook (LOW ) IterTimerHook (LOW ) EvalHook (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook -------------------- after_train_epoch: (NORMAL ) CheckpointHook (LOW ) EvalHook (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook -------------------- before_val_epoch: (NORMAL ) NumClassCheckHook (LOW ) IterTimerHook (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook -------------------- before_val_iter: (LOW ) IterTimerHook -------------------- after_val_iter: (LOW ) IterTimerHook -------------------- after_val_epoch: (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook -------------------- after_run: (VERY_LOW ) TextLoggerHook (VERY_LOW ) MMDetWandbHook --------------------
runner = dict(type=’EpochBasedRunner’, max_epochs=36)
evaluation = dict(interval=4, metric=’bbox’, save_best=’bbox_mAP’)
auto_scale_lr = dict(enable=False, base_batch_size=16)
10 * 36 = 2.5 * (4*36)
step 144
epoch
전체 데이터 셋에 대해 1번 forward pass/backward pass 과정(Back propagation algorithm, 역전파)을 거친 것
전체 데이터셋에 대해 한 번 학습을 완료한 상태
step
하나의 Batch로부터 loss를 계산한 후, Weight와 Bias를 1회 업데이트하는 것을 1 Step이라고 한다.
Batch Size
1 Step에서 사용한 데이터 개수. 가령 SGD의 batch size는 1이다.
1 epoch과정에서 효율적인 학습을 위해 (메모리부족, 속도저항방지) 전체 데이터(Batch)를 일부데이터(Mini-Batch)로 만들고, 그때 크기를 batch size라고 한다.
Iteration
하나의 epoch에 데이터를 나눌 때 몇 번 나누어서 주는지를 iteration이라고 한다.
sample(전체학습데이터) N * Epochs n = Batch size * Step n
ex) 턱걸이48개목표 * 1회 반복 = 1세트당 12개 * 4 세트
$ python sixxtools/train.py \\ "sixxconfigs/cascade_rcnn_r50_fpn_1x_coco.py" \\ --work-dir "work_dirs/ttt" 2022-12-05 15:47:25,284 - mmdet - INFO - workflow: [('train', 1), ('val', 1)], max: 36 epochs 2022-12-05 15:47:25,284 - mmdet - INFO - Checkpoints will be saved to /home/oschung_skcc/my/git/mmdetection/work_dirs/ttt by HardDiskBackend. wandb: Currently logged in as: onesixx. Use `wandb login --relogin` to force relogin wandb: wandb version 0.13.5 is available! To upgrade, please run: wandb: $ pip install wandb --upgrade wandb: Tracking run with wandb version 0.13.4 wandb: Run data is saved locally in /home/oschung_skcc/my/git/mmdetection/wandb/run-20221205_154726-25x8bwd3 wandb: Run `wandb offline` to turn off syncing. wandb: Syncing run exp-cascade_rcnn_r50_fpn_1x-job16 wandb: ⭐️ View project at https://wandb.ai/onesixx/kaggle_cowboy_outfits wandb: ? View run at https://wandb.ai/onesixx/kaggle_cowboy_outfits/runs/25x8bwd3 2022-12-05 15:47:32,533 - mmdet - WARNING - The num_eval_images (13) is greater than the total number of validation samples (13). The complete validation dataset will be logged. wandb: 15 of 15 files downloaded. 2022-12-05 15:47:48,594 - mmdet - INFO - Epoch [1][1/4] lr: 2.500e-06, eta: 0:13:13, time: 5.551, data_time: 2.331, memory: 5837, loss_rpn_cls: 0.0031, loss_rpn_bbox: 0.0066, s0.loss_cls: 1.7488, s0.acc: 20.5078, s0.loss_bbox: 0.0853, s1.loss_cls: 0.9127, s1.acc: 12.6465, s1.loss_bbox: 0.0246, s2.loss_cls: 0.4599, s2.acc: 7.6660, s2.loss_bbox: 0.0073, loss: 3.2482 2022-12-05 15:47:48,897 - mmdet - INFO - Epoch [1][2/4] lr: 7.494e-06, eta: 0:06:55, time: 0.303, data_time: 0.037, memory: 6815, loss_rpn_cls: 0.1012, loss_rpn_bbox: 0.0128, s0.loss_cls: 1.7895, s0.acc: 10.7910, s0.loss_bbox: 0.1166, s1.loss_cls: 0.9254, s1.acc: 7.1289, s1.loss_bbox: 0.0801, s2.loss_cls: 0.4467, s2.acc: 10.5469, s2.loss_bbox: 0.0285, loss: 3.5007 2022-12-05 15:47:49,231 - mmdet - INFO - Epoch [1][3/4] lr: 1.248e-05, eta: 0:04:50, time: 0.332, data_time: 0.036, memory: 6815, loss_rpn_cls: 0.0937, loss_rpn_bbox: 0.0147, s0.loss_cls: 1.8427, s0.acc: 8.2031, s0.loss_bbox: 0.0674, s1.loss_cls: 0.9395, s1.acc: 9.7656, s1.loss_bbox: 0.0559, s2.loss_cls: 0.4559, s2.acc: 6.0547, s2.loss_bbox: 0.0200, loss: 3.4897 2022-12-05 15:47:49,518 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:47:49,519 - mmdet - INFO - Epoch [1][4/4] lr: 1.747e-05, eta: 0:03:46, time: 0.285, data_time: 0.038, memory: 6815, loss_rpn_cls: 0.2174, loss_rpn_bbox: 0.0139, s0.loss_cls: 1.8114, s0.acc: 11.2305, s0.loss_bbox: 0.0351, s1.loss_cls: 0.9192, s1.acc: 10.6934, s1.loss_bbox: 0.0265, s2.loss_cls: 0.4488, s2.acc: 8.4473, s2.loss_bbox: 0.0149, loss: 3.4874 2022-12-05 15:47:52,798 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:47:52,799 - mmdet - INFO - Epoch(val) [1][4] loss_rpn_cls: 0.0456, loss_rpn_bbox: 0.0090, s0.loss_cls: 1.8224, s0.acc: 12.1704, s0.loss_bbox: 0.0668, s1.loss_cls: 0.9317, s1.acc: 7.9834, s1.loss_bbox: 0.0805, s2.loss_cls: 0.4505, s2.acc: 7.6172, s2.loss_bbox: 0.0396, loss: 3.4463 2022-12-05 15:47:55,462 - mmdet - INFO - Epoch [2][1/4] lr: 2.244e-05, eta: 0:04:12, time: 2.624, data_time: 2.334, memory: 6815, loss_rpn_cls: 0.0249, loss_rpn_bbox: 0.0083, s0.loss_cls: 1.8190, s0.acc: 11.1816, s0.loss_bbox: 0.1488, s1.loss_cls: 0.9295, s1.acc: 9.9609, s1.loss_bbox: 0.1127, s2.loss_cls: 0.4521, s2.acc: 7.4219, s2.loss_bbox: 0.0453, loss: 3.5407 2022-12-05 15:47:55,751 - mmdet - INFO - Epoch [2][2/4] lr: 2.739e-05, eta: 0:03:35, time: 0.287, data_time: 0.046, memory: 6815, loss_rpn_cls: 0.2532, loss_rpn_bbox: 0.0212, s0.loss_cls: 1.7522, s0.acc: 16.4551, s0.loss_bbox: 0.0064, s1.loss_cls: 0.8942, s1.acc: 10.8398, s1.loss_bbox: 0.0023, s2.loss_cls: 0.4332, s2.acc: 17.6758, s2.loss_bbox: 0.0008, loss: 3.3635 2022-12-05 15:47:56,040 - mmdet - INFO - Epoch [2][3/4] lr: 3.233e-05, eta: 0:03:09, time: 0.291, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0009, loss_rpn_bbox: 0.0070, s0.loss_cls: 1.7066, s0.acc: 29.6387, s0.loss_bbox: 0.0882, s1.loss_cls: 0.8997, s1.acc: 17.7734, s1.loss_bbox: 0.0183, s2.loss_cls: 0.4533, s2.acc: 10.2051, s2.loss_bbox: 0.0034, loss: 3.1774 2022-12-05 15:47:56,311 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:47:56,311 - mmdet - INFO - Epoch [2][4/4] lr: 3.725e-05, eta: 0:02:49, time: 0.271, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.2295, loss_rpn_bbox: 0.0216, s0.loss_cls: 1.7507, s0.acc: 19.7266, s0.loss_bbox: 0.0358, s1.loss_cls: 0.9137, s1.acc: 13.3789, s1.loss_bbox: 0.0340, s2.loss_cls: 0.4403, s2.acc: 15.9668, s2.loss_bbox: 0.0075, loss: 3.4330 2022-12-05 15:47:59,695 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:47:59,696 - mmdet - INFO - Epoch(val) [2][4] loss_rpn_cls: 0.0573, loss_rpn_bbox: 0.0103, s0.loss_cls: 1.7448, s0.acc: 23.4863, s0.loss_bbox: 0.0672, s1.loss_cls: 0.9018, s1.acc: 17.5293, s1.loss_bbox: 0.0677, s2.loss_cls: 0.4363, s2.acc: 13.7085, s2.loss_bbox: 0.0342, loss: 3.3197 2022-12-05 15:48:02,492 - mmdet - INFO - Epoch [3][1/4] lr: 4.214e-05, eta: 0:03:10, time: 2.750, data_time: 2.361, memory: 6815, loss_rpn_cls: 0.2049, loss_rpn_bbox: 0.0143, s0.loss_cls: 1.6994, s0.acc: 29.4434, s0.loss_bbox: 0.0358, s1.loss_cls: 0.8882, s1.acc: 21.3867, s1.loss_bbox: 0.0259, s2.loss_cls: 0.4300, s2.acc: 23.4375, s2.loss_bbox: 0.0048, loss: 3.3034 2022-12-05 15:48:02,773 - mmdet - INFO - Epoch [3][2/4] lr: 4.700e-05, eta: 0:02:53, time: 0.281, data_time: 0.051, memory: 6815, loss_rpn_cls: 0.0302, loss_rpn_bbox: 0.0082, s0.loss_cls: 1.7365, s0.acc: 23.2422, s0.loss_bbox: 0.1428, s1.loss_cls: 0.8990, s1.acc: 21.0938, s1.loss_bbox: 0.1101, s2.loss_cls: 0.4383, s2.acc: 15.8691, s2.loss_bbox: 0.0411, loss: 3.4062 2022-12-05 15:48:03,047 - mmdet - INFO - Epoch [3][3/4] lr: 5.183e-05, eta: 0:02:40, time: 0.281, data_time: 0.045, memory: 6815, loss_rpn_cls: 0.0111, loss_rpn_bbox: 0.0070, s0.loss_cls: 1.5662, s0.acc: 62.2070, s0.loss_bbox: 0.0874, s1.loss_cls: 0.8483, s1.acc: 36.7676, s1.loss_bbox: 0.0180, s2.loss_cls: 0.4284, s2.acc: 25.0977, s2.loss_bbox: 0.0038, loss: 2.9701 2022-12-05 15:48:03,326 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:03,327 - mmdet - INFO - Epoch [3][4/4] lr: 5.662e-05, eta: 0:02:28, time: 0.277, data_time: 0.043, memory: 6815, loss_rpn_cls: 0.1471, loss_rpn_bbox: 0.0221, s0.loss_cls: 1.6198, s0.acc: 46.9238, s0.loss_bbox: 0.0831, s1.loss_cls: 0.8598, s1.acc: 31.2988, s1.loss_bbox: 0.0597, s2.loss_cls: 0.4192, s2.acc: 31.0547, s2.loss_bbox: 0.0196, loss: 3.2305 2022-12-05 15:48:06,627 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:06,627 - mmdet - INFO - Epoch(val) [3][4] loss_rpn_cls: 0.0471, loss_rpn_bbox: 0.0093, s0.loss_cls: 1.6069, s0.acc: 55.5298, s0.loss_bbox: 0.0692, s1.loss_cls: 0.8455, s1.acc: 38.5742, s1.loss_bbox: 0.0713, s2.loss_cls: 0.4126, s2.acc: 38.5864, s2.loss_bbox: 0.0359, loss: 3.0978 2022-12-05 15:48:09,260 - mmdet - INFO - Epoch [4][1/4] lr: 6.138e-05, eta: 0:02:42, time: 2.591, data_time: 2.303, memory: 6815, loss_rpn_cls: 0.0469, loss_rpn_bbox: 0.0142, s0.loss_cls: 1.6481, s0.acc: 44.1406, s0.loss_bbox: 0.1738, s1.loss_cls: 0.8817, s1.acc: 20.7520, s1.loss_bbox: 0.1367, s2.loss_cls: 0.4236, s2.acc: 28.8086, s2.loss_bbox: 0.0479, loss: 3.3728 2022-12-05 15:48:09,547 - mmdet - INFO - Epoch [4][2/4] lr: 6.609e-05, eta: 0:02:32, time: 0.286, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0668, loss_rpn_bbox: 0.0123, s0.loss_cls: 1.5206, s0.acc: 69.2871, s0.loss_bbox: 0.1097, s1.loss_cls: 0.8262, s1.acc: 47.9980, s1.loss_bbox: 0.0820, s2.loss_cls: 0.3992, s2.acc: 58.4961, s2.loss_bbox: 0.0206, loss: 3.0374 2022-12-05 15:48:09,818 - mmdet - INFO - Epoch [4][3/4] lr: 7.075e-05, eta: 0:02:23, time: 0.273, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0086, loss_rpn_bbox: 0.0070, s0.loss_cls: 1.3406, s0.acc: 93.6035, s0.loss_bbox: 0.0854, s1.loss_cls: 0.7601, s1.acc: 77.3438, s1.loss_bbox: 0.0229, s2.loss_cls: 0.3863, s2.acc: 61.1816, s2.loss_bbox: 0.0068, loss: 2.6176 2022-12-05 15:48:10,084 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:10,085 - mmdet - INFO - Epoch [4][4/4] lr: 7.537e-05, eta: 0:02:15, time: 0.267, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.2018, loss_rpn_bbox: 0.0171, s0.loss_cls: 1.4287, s0.acc: 87.7441, s0.loss_bbox: 0.0437, s1.loss_cls: 0.7658, s1.acc: 76.0254, s1.loss_bbox: 0.0209, s2.loss_cls: 0.3789, s2.acc: 70.2148, s2.loss_bbox: 0.0067, loss: 2.8637 [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 17.0 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:48:11,084 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.01s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:48:11,106 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.004 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.004 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.007 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.100 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.100 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.100 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.150 2022-12-05 15:48:12,715 - mmdet - INFO - Now best checkpoint is saved as best_bbox_mAP_epoch_4.pth. 2022-12-05 15:48:12,716 - mmdet - INFO - Best bbox_mAP is 0.0020 at 4 epoch. 2022-12-05 15:48:12,716 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:12,716 - mmdet - INFO - Epoch(val) [4][13] bbox_mAP: 0.0020, bbox_mAP_50: 0.0040, bbox_mAP_75: 0.0040, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0070, bbox_mAP_copypaste: 0.002 0.004 0.004 -1.000 0.000 0.007 2022-12-05 15:48:16,737 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:16,737 - mmdet - INFO - Epoch(val) [4][4] loss_rpn_cls: 0.0593, loss_rpn_bbox: 0.0098, s0.loss_cls: 1.3725, s0.acc: 90.1611, s0.loss_bbox: 0.0601, s1.loss_cls: 0.7525, s1.acc: 75.0854, s1.loss_bbox: 0.0682, s2.loss_cls: 0.3672, s2.acc: 80.8105, s2.loss_bbox: 0.0313, loss: 2.7208 2022-12-05 15:48:19,419 - mmdet - INFO - Epoch [5][1/4] lr: 7.993e-05, eta: 0:02:26, time: 2.640, data_time: 2.338, memory: 6815, loss_rpn_cls: 0.2093, loss_rpn_bbox: 0.0202, s0.loss_cls: 1.3752, s0.acc: 88.7695, s0.loss_bbox: 0.1067, s1.loss_cls: 0.7636, s1.acc: 71.3867, s1.loss_bbox: 0.0834, s2.loss_cls: 0.3672, s2.acc: 81.2988, s2.loss_bbox: 0.0250, loss: 2.9506 2022-12-05 15:48:19,737 - mmdet - INFO - Epoch [5][2/4] lr: 8.444e-05, eta: 0:02:19, time: 0.322, data_time: 0.044, memory: 6815, loss_rpn_cls: 0.0010, loss_rpn_bbox: 0.0065, s0.loss_cls: 1.1160, s0.acc: 97.5098, s0.loss_bbox: 0.0809, s1.loss_cls: 0.6652, s1.acc: 94.6777, s1.loss_bbox: 0.0225, s2.loss_cls: 0.3447, s2.acc: 87.2559, s2.loss_bbox: 0.0083, loss: 2.2450 2022-12-05 15:48:20,028 - mmdet - INFO - Epoch [5][3/4] lr: 8.889e-05, eta: 0:02:12, time: 0.287, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.1231, loss_rpn_bbox: 0.0104, s0.loss_cls: 1.1126, s0.acc: 97.8516, s0.loss_bbox: 0.0371, s1.loss_cls: 0.6611, s1.acc: 92.2363, s1.loss_bbox: 0.0237, s2.loss_cls: 0.3261, s2.acc: 94.2383, s2.loss_bbox: 0.0045, loss: 2.2986 2022-12-05 15:48:20,327 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:20,328 - mmdet - INFO - Epoch [5][4/4] lr: 9.328e-05, eta: 0:02:07, time: 0.301, data_time: 0.043, memory: 6815, loss_rpn_cls: 0.0267, loss_rpn_bbox: 0.0069, s0.loss_cls: 1.2198, s0.acc: 95.7520, s0.loss_bbox: 0.0655, s1.loss_cls: 0.6918, s1.acc: 88.2324, s1.loss_bbox: 0.0425, s2.loss_cls: 0.3442, s2.acc: 89.0625, s2.loss_bbox: 0.0196, loss: 2.4170 2022-12-05 15:48:23,574 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:23,575 - mmdet - INFO - Epoch(val) [5][4] loss_rpn_cls: 0.0611, loss_rpn_bbox: 0.0105, s0.loss_cls: 1.0831, s0.acc: 96.2158, s0.loss_bbox: 0.0521, s1.loss_cls: 0.6351, s1.acc: 93.3960, s1.loss_bbox: 0.0593, s2.loss_cls: 0.3137, s2.acc: 95.9595, s2.loss_bbox: 0.0277, loss: 2.2426 2022-12-05 15:48:26,253 - mmdet - INFO - Epoch [6][1/4] lr: 9.760e-05, eta: 0:02:15, time: 2.634, data_time: 2.319, memory: 6815, loss_rpn_cls: 0.2079, loss_rpn_bbox: 0.0220, s0.loss_cls: 0.9653, s0.acc: 98.7305, s0.loss_bbox: 0.0204, s1.loss_cls: 0.5960, s1.acc: 98.4375, s1.loss_bbox: 0.0080, s2.loss_cls: 0.2932, s2.acc: 98.0469, s2.loss_bbox: 0.0035, loss: 2.1164 2022-12-05 15:48:26,526 - mmdet - INFO - Epoch [6][2/4] lr: 1.019e-04, eta: 0:02:09, time: 0.279, data_time: 0.053, memory: 6815, loss_rpn_cls: 0.1902, loss_rpn_bbox: 0.0178, s0.loss_cls: 1.0163, s0.acc: 97.3633, s0.loss_bbox: 0.0376, s1.loss_cls: 0.6253, s1.acc: 95.8008, s1.loss_bbox: 0.0257, s2.loss_cls: 0.3012, s2.acc: 95.8984, s2.loss_bbox: 0.0144, loss: 2.2286 2022-12-05 15:48:26,798 - mmdet - INFO - Epoch [6][3/4] lr: 1.060e-04, eta: 0:02:04, time: 0.272, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0023, loss_rpn_bbox: 0.0069, s0.loss_cls: 0.7148, s0.acc: 97.8027, s0.loss_bbox: 0.0794, s1.loss_cls: 0.4852, s1.acc: 98.8770, s1.loss_bbox: 0.0216, s2.loss_cls: 0.2589, s2.acc: 99.4141, s2.loss_bbox: 0.0045, loss: 1.5736 2022-12-05 15:48:27,064 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:27,065 - mmdet - INFO - Epoch [6][4/4] lr: 1.102e-04, eta: 0:01:59, time: 0.266, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0112, loss_rpn_bbox: 0.0072, s0.loss_cls: 0.9363, s0.acc: 93.7988, s0.loss_bbox: 0.1394, s1.loss_cls: 0.5614, s1.acc: 94.3848, s1.loss_bbox: 0.1045, s2.loss_cls: 0.2814, s2.acc: 96.7285, s2.loss_bbox: 0.0245, loss: 2.0657 2022-12-05 15:48:30,330 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:30,331 - mmdet - INFO - Epoch(val) [6][4] loss_rpn_cls: 0.0527, loss_rpn_bbox: 0.0100, s0.loss_cls: 0.8206, s0.acc: 95.9351, s0.loss_bbox: 0.0612, s1.loss_cls: 0.5178, s1.acc: 95.4224, s1.loss_bbox: 0.0723, s2.loss_cls: 0.2571, s2.acc: 96.5210, s2.loss_bbox: 0.0361, loss: 1.8279 2022-12-05 15:48:33,017 - mmdet - INFO - Epoch [7][1/4] lr: 1.142e-04, eta: 0:02:06, time: 2.648, data_time: 2.361, memory: 6815, loss_rpn_cls: 0.1633, loss_rpn_bbox: 0.0166, s0.loss_cls: 0.8366, s0.acc: 94.5801, s0.loss_bbox: 0.1210, s1.loss_cls: 0.5287, s1.acc: 94.8242, s1.loss_bbox: 0.0866, s2.loss_cls: 0.2582, s2.acc: 96.2402, s2.loss_bbox: 0.0299, loss: 2.0408 2022-12-05 15:48:33,295 - mmdet - INFO - Epoch [7][2/4] lr: 1.181e-04, eta: 0:02:01, time: 0.278, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0045, loss_rpn_bbox: 0.0065, s0.loss_cls: 0.4910, s0.acc: 97.7539, s0.loss_bbox: 0.0770, s1.loss_cls: 0.3753, s1.acc: 98.7305, s1.loss_bbox: 0.0274, s2.loss_cls: 0.2054, s2.acc: 99.1211, s2.loss_bbox: 0.0118, loss: 1.1990 2022-12-05 15:48:33,563 - mmdet - INFO - Epoch [7][3/4] lr: 1.220e-04, eta: 0:01:57, time: 0.269, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0319, loss_rpn_bbox: 0.0067, s0.loss_cls: 0.7531, s0.acc: 95.8984, s0.loss_bbox: 0.0676, s1.loss_cls: 0.4770, s1.acc: 96.5332, s1.loss_bbox: 0.0423, s2.loss_cls: 0.2418, s2.acc: 96.9238, s2.loss_bbox: 0.0204, loss: 1.6408 2022-12-05 15:48:33,854 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:33,855 - mmdet - INFO - Epoch [7][4/4] lr: 1.258e-04, eta: 0:01:53, time: 0.288, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0837, loss_rpn_bbox: 0.0158, s0.loss_cls: 0.6040, s0.acc: 95.0195, s0.loss_bbox: 0.1144, s1.loss_cls: 0.4177, s1.acc: 95.5566, s1.loss_bbox: 0.0986, s2.loss_cls: 0.2091, s2.acc: 97.4609, s2.loss_bbox: 0.0258, loss: 1.5691 2022-12-05 15:48:37,136 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:37,137 - mmdet - INFO - Epoch(val) [7][4] loss_rpn_cls: 0.0351, loss_rpn_bbox: 0.0100, s0.loss_cls: 0.5978, s0.acc: 95.3369, s0.loss_bbox: 0.0685, s1.loss_cls: 0.4041, s1.acc: 95.2026, s1.loss_bbox: 0.0737, s2.loss_cls: 0.2012, s2.acc: 96.3867, s2.loss_bbox: 0.0354, loss: 1.4257 2022-12-05 15:48:39,794 - mmdet - INFO - Epoch [8][1/4] lr: 1.295e-04, eta: 0:01:59, time: 2.617, data_time: 2.327, memory: 6815, loss_rpn_cls: 0.0077, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.3269, s0.acc: 97.7539, s0.loss_bbox: 0.0744, s1.loss_cls: 0.2765, s1.acc: 98.8281, s1.loss_bbox: 0.0260, s2.loss_cls: 0.1560, s2.acc: 99.0234, s2.loss_bbox: 0.0130, loss: 0.8870 2022-12-05 15:48:40,082 - mmdet - INFO - Epoch [8][2/4] lr: 1.331e-04, eta: 0:01:55, time: 0.288, data_time: 0.049, memory: 6815, loss_rpn_cls: 0.1386, loss_rpn_bbox: 0.0144, s0.loss_cls: 0.5305, s0.acc: 95.9961, s0.loss_bbox: 0.0675, s1.loss_cls: 0.3681, s1.acc: 96.5820, s1.loss_bbox: 0.0434, s2.loss_cls: 0.1824, s2.acc: 96.9727, s2.loss_bbox: 0.0207, loss: 1.3657 2022-12-05 15:48:40,365 - mmdet - INFO - Epoch [8][3/4] lr: 1.366e-04, eta: 0:01:51, time: 0.281, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0505, loss_rpn_bbox: 0.0077, s0.loss_cls: 0.4934, s0.acc: 95.2637, s0.loss_bbox: 0.1090, s1.loss_cls: 0.3365, s1.acc: 95.9473, s1.loss_bbox: 0.0823, s2.loss_cls: 0.1738, s2.acc: 97.5586, s2.loss_bbox: 0.0238, loss: 1.2771 2022-12-05 15:48:40,634 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:40,643 - mmdet - INFO - Epoch [8][4/4] lr: 1.400e-04, eta: 0:01:48, time: 0.272, data_time: 0.044, memory: 6815, loss_rpn_cls: 0.1328, loss_rpn_bbox: 0.0150, s0.loss_cls: 0.3824, s0.acc: 97.3145, s0.loss_bbox: 0.0459, s1.loss_cls: 0.2794, s1.acc: 97.6562, s1.loss_bbox: 0.0175, s2.loss_cls: 0.1469, s2.acc: 97.5098, s2.loss_bbox: 0.0095, loss: 1.0294 2022-12-05 15:48:40,744 - mmdet - INFO - Saving checkpoint at 8 epochs [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 17.1 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:48:43,669 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.01s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:48:43,691 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.012 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.030 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.005 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.035 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.283 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.283 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.283 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.425 2022-12-05 15:48:43,917 - mmdet - INFO - The previous best checkpoint /home/oschung_skcc/my/git/mmdetection/work_dirs/ttt/best_bbox_mAP_epoch_4.pth was removed 2022-12-05 15:48:45,927 - mmdet - INFO - Now best checkpoint is saved as best_bbox_mAP_epoch_8.pth. 2022-12-05 15:48:45,928 - mmdet - INFO - Best bbox_mAP is 0.0120 at 8 epoch. 2022-12-05 15:48:45,928 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:45,928 - mmdet - INFO - Epoch(val) [8][13] bbox_mAP: 0.0120, bbox_mAP_50: 0.0300, bbox_mAP_75: 0.0050, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0350, bbox_mAP_copypaste: 0.012 0.030 0.005 -1.000 0.000 0.035 Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.01s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:48:55,004 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:55,005 - mmdet - INFO - Epoch(val) [8][4] loss_rpn_cls: 0.0349, loss_rpn_bbox: 0.0096, s0.loss_cls: 0.4246, s0.acc: 95.4712, s0.loss_bbox: 0.0698, s1.loss_cls: 0.2975, s1.acc: 95.2637, s1.loss_bbox: 0.0782, s2.loss_cls: 0.1499, s2.acc: 96.3379, s2.loss_bbox: 0.0378, loss: 1.1024 2022-12-05 15:48:57,664 - mmdet - INFO - Epoch [9][1/4] lr: 1.434e-04, eta: 0:01:52, time: 2.620, data_time: 2.328, memory: 6815, loss_rpn_cls: 0.0962, loss_rpn_bbox: 0.0109, s0.loss_cls: 0.5071, s0.acc: 94.5801, s0.loss_bbox: 0.1009, s1.loss_cls: 0.3324, s1.acc: 94.8730, s1.loss_bbox: 0.0936, s2.loss_cls: 0.1676, s2.acc: 96.5332, s2.loss_bbox: 0.0323, loss: 1.3411 2022-12-05 15:48:57,950 - mmdet - INFO - Epoch [9][2/4] lr: 1.466e-04, eta: 0:01:49, time: 0.287, data_time: 0.046, memory: 6815, loss_rpn_cls: 0.1576, loss_rpn_bbox: 0.0193, s0.loss_cls: 0.2974, s0.acc: 98.2910, s0.loss_bbox: 0.0253, s1.loss_cls: 0.2258, s1.acc: 98.4863, s1.loss_bbox: 0.0157, s2.loss_cls: 0.1186, s2.acc: 98.7793, s2.loss_bbox: 0.0077, loss: 0.8674 2022-12-05 15:48:58,230 - mmdet - INFO - Epoch [9][3/4] lr: 1.497e-04, eta: 0:01:46, time: 0.277, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0303, loss_rpn_bbox: 0.0064, s0.loss_cls: 0.2539, s0.acc: 96.7773, s0.loss_bbox: 0.0700, s1.loss_cls: 0.1985, s1.acc: 97.1191, s1.loss_bbox: 0.0412, s2.loss_cls: 0.1066, s2.acc: 97.7051, s2.loss_bbox: 0.0110, loss: 0.7180 2022-12-05 15:48:58,501 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:48:58,505 - mmdet - INFO - Epoch [9][4/4] lr: 1.527e-04, eta: 0:01:43, time: 0.274, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0048, loss_rpn_bbox: 0.0075, s0.loss_cls: 0.1208, s0.acc: 98.4375, s0.loss_bbox: 0.0457, s1.loss_cls: 0.1178, s1.acc: 98.7793, s1.loss_bbox: 0.0229, s2.loss_cls: 0.0691, s2.acc: 99.1699, s2.loss_bbox: 0.0065, loss: 0.3951 2022-12-05 15:49:01,734 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:01,735 - mmdet - INFO - Epoch(val) [9][4] loss_rpn_cls: 0.0423, loss_rpn_bbox: 0.0096, s0.loss_cls: 0.3182, s0.acc: 95.4102, s0.loss_bbox: 0.0716, s1.loss_cls: 0.2191, s1.acc: 95.3247, s1.loss_bbox: 0.0755, s2.loss_cls: 0.1107, s2.acc: 96.3379, s2.loss_bbox: 0.0370, loss: 0.8841 2022-12-05 15:49:04,410 - mmdet - INFO - Epoch [10][1/4] lr: 1.556e-04, eta: 0:01:46, time: 2.630, data_time: 2.324, memory: 6815, loss_rpn_cls: 0.0587, loss_rpn_bbox: 0.0130, s0.loss_cls: 0.3101, s0.acc: 94.7754, s0.loss_bbox: 0.1114, s1.loss_cls: 0.2117, s1.acc: 95.4590, s1.loss_bbox: 0.0921, s2.loss_cls: 0.1052, s2.acc: 97.5586, s2.loss_bbox: 0.0208, loss: 0.9229 2022-12-05 15:49:04,691 - mmdet - INFO - Epoch [10][2/4] lr: 1.584e-04, eta: 0:01:43, time: 0.284, data_time: 0.052, memory: 6815, loss_rpn_cls: 0.0264, loss_rpn_bbox: 0.0042, s0.loss_cls: 0.3358, s0.acc: 95.3125, s0.loss_bbox: 0.0751, s1.loss_cls: 0.2101, s1.acc: 95.5078, s1.loss_bbox: 0.0549, s2.loss_cls: 0.1127, s2.acc: 96.0938, s2.loss_bbox: 0.0278, loss: 0.8470 2022-12-05 15:49:04,961 - mmdet - INFO - Epoch [10][3/4] lr: 1.611e-04, eta: 0:01:41, time: 0.270, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0696, loss_rpn_bbox: 0.0073, s0.loss_cls: 0.2300, s0.acc: 97.0215, s0.loss_bbox: 0.0544, s1.loss_cls: 0.1467, s1.acc: 97.4609, s1.loss_bbox: 0.0276, s2.loss_cls: 0.0797, s2.acc: 97.8516, s2.loss_bbox: 0.0100, loss: 0.6253 2022-12-05 15:49:05,234 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:05,235 - mmdet - INFO - Epoch [10][4/4] lr: 1.637e-04, eta: 0:01:38, time: 0.273, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0019, loss_rpn_bbox: 0.0076, s0.loss_cls: 0.0874, s0.acc: 98.4375, s0.loss_bbox: 0.0426, s1.loss_cls: 0.0733, s1.acc: 98.9258, s1.loss_bbox: 0.0194, s2.loss_cls: 0.0425, s2.acc: 99.3164, s2.loss_bbox: 0.0051, loss: 0.2798 2022-12-05 15:49:08,605 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:08,606 - mmdet - INFO - Epoch(val) [10][4] loss_rpn_cls: 0.0324, loss_rpn_bbox: 0.0099, s0.loss_cls: 0.2758, s0.acc: 95.0684, s0.loss_bbox: 0.0778, s1.loss_cls: 0.1757, s1.acc: 95.2759, s1.loss_bbox: 0.0737, s2.loss_cls: 0.0883, s2.acc: 96.1182, s2.loss_bbox: 0.0394, loss: 0.7728 2022-12-05 15:49:11,307 - mmdet - INFO - Epoch [11][1/4] lr: 1.662e-04, eta: 0:01:41, time: 2.656, data_time: 2.351, memory: 6815, loss_rpn_cls: 0.0016, loss_rpn_bbox: 0.0068, s0.loss_cls: 0.0950, s0.acc: 98.0469, s0.loss_bbox: 0.0534, s1.loss_cls: 0.0699, s1.acc: 98.5840, s1.loss_bbox: 0.0263, s2.loss_cls: 0.0410, s2.acc: 98.9258, s2.loss_bbox: 0.0108, loss: 0.3049 2022-12-05 15:49:11,575 - mmdet - INFO - Epoch [11][2/4] lr: 1.685e-04, eta: 0:01:38, time: 0.272, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0298, loss_rpn_bbox: 0.0078, s0.loss_cls: 0.2283, s0.acc: 95.3613, s0.loss_bbox: 0.1032, s1.loss_cls: 0.1312, s1.acc: 95.9473, s1.loss_bbox: 0.0775, s2.loss_cls: 0.0647, s2.acc: 97.1191, s2.loss_bbox: 0.0169, loss: 0.6593 2022-12-05 15:49:11,857 - mmdet - INFO - Epoch [11][3/4] lr: 1.708e-04, eta: 0:01:36, time: 0.279, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0706, loss_rpn_bbox: 0.0104, s0.loss_cls: 0.2638, s0.acc: 95.1660, s0.loss_bbox: 0.0887, s1.loss_cls: 0.1477, s1.acc: 95.6543, s1.loss_bbox: 0.0700, s2.loss_cls: 0.0751, s2.acc: 97.0703, s2.loss_bbox: 0.0239, loss: 0.7503 2022-12-05 15:49:12,123 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:12,123 - mmdet - INFO - Epoch [11][4/4] lr: 1.729e-04, eta: 0:01:33, time: 0.269, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0144, loss_rpn_bbox: 0.0067, s0.loss_cls: 0.2314, s0.acc: 95.4102, s0.loss_bbox: 0.0801, s1.loss_cls: 0.1464, s1.acc: 95.5078, s1.loss_bbox: 0.0644, s2.loss_cls: 0.0716, s2.acc: 96.5332, s2.loss_bbox: 0.0235, loss: 0.6384 2022-12-05 15:49:15,364 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:15,364 - mmdet - INFO - Epoch(val) [11][4] loss_rpn_cls: 0.0365, loss_rpn_bbox: 0.0102, s0.loss_cls: 0.2164, s0.acc: 96.0327, s0.loss_bbox: 0.0564, s1.loss_cls: 0.1366, s1.acc: 95.6787, s1.loss_bbox: 0.0659, s2.loss_cls: 0.0667, s2.acc: 96.6064, s2.loss_bbox: 0.0327, loss: 0.6214 2022-12-05 15:49:18,047 - mmdet - INFO - Epoch [12][1/4] lr: 1.749e-04, eta: 0:01:36, time: 2.642, data_time: 2.349, memory: 6815, loss_rpn_cls: 0.0598, loss_rpn_bbox: 0.0077, s0.loss_cls: 0.1913, s0.acc: 96.6309, s0.loss_bbox: 0.0574, s1.loss_cls: 0.1152, s1.acc: 96.8262, s1.loss_bbox: 0.0590, s2.loss_cls: 0.0563, s2.acc: 97.6074, s2.loss_bbox: 0.0232, loss: 0.5698 2022-12-05 15:49:18,322 - mmdet - INFO - Epoch [12][2/4] lr: 1.768e-04, eta: 0:01:34, time: 0.278, data_time: 0.050, memory: 6815, loss_rpn_cls: 0.0408, loss_rpn_bbox: 0.0136, s0.loss_cls: 0.2844, s0.acc: 94.6289, s0.loss_bbox: 0.0891, s1.loss_cls: 0.1503, s1.acc: 95.2148, s1.loss_bbox: 0.0763, s2.loss_cls: 0.0746, s2.acc: 96.8750, s2.loss_bbox: 0.0214, loss: 0.7506 2022-12-05 15:49:18,597 - mmdet - INFO - Epoch [12][3/4] lr: 1.785e-04, eta: 0:01:31, time: 0.274, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0010, loss_rpn_bbox: 0.0072, s0.loss_cls: 0.0800, s0.acc: 98.2422, s0.loss_bbox: 0.0453, s1.loss_cls: 0.0538, s1.acc: 98.5352, s1.loss_bbox: 0.0210, s2.loss_cls: 0.0283, s2.acc: 98.8281, s2.loss_bbox: 0.0084, loss: 0.2451 2022-12-05 15:49:18,864 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:18,865 - mmdet - INFO - Epoch [12][4/4] lr: 1.802e-04, eta: 0:01:29, time: 0.268, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0180, loss_rpn_bbox: 0.0053, s0.loss_cls: 0.1942, s0.acc: 96.2402, s0.loss_bbox: 0.0708, s1.loss_cls: 0.1034, s1.acc: 96.3379, s1.loss_bbox: 0.0498, s2.loss_cls: 0.0542, s2.acc: 96.9238, s2.loss_bbox: 0.0182, loss: 0.5138 [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 18.6 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:49:19,733 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:49:19,747 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.009 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.019 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.005 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.028 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.275 2022-12-05 15:49:19,748 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:19,748 - mmdet - INFO - Epoch(val) [12][13] bbox_mAP: 0.0090, bbox_mAP_50: 0.0190, bbox_mAP_75: 0.0050, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0280, bbox_mAP_copypaste: 0.009 0.019 0.005 -1.000 0.000 0.028 2022-12-05 15:49:23,488 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:23,489 - mmdet - INFO - Epoch(val) [12][4] loss_rpn_cls: 0.0298, loss_rpn_bbox: 0.0088, s0.loss_cls: 0.2269, s0.acc: 95.5566, s0.loss_bbox: 0.0639, s1.loss_cls: 0.1371, s1.acc: 95.2271, s1.loss_bbox: 0.0719, s2.loss_cls: 0.0637, s2.acc: 96.1670, s2.loss_bbox: 0.0383, loss: 0.6403 2022-12-05 15:49:26,129 - mmdet - INFO - Epoch [13][1/4] lr: 1.817e-04, eta: 0:01:31, time: 2.597, data_time: 2.310, memory: 6815, loss_rpn_cls: 0.0246, loss_rpn_bbox: 0.0137, s0.loss_cls: 0.2719, s0.acc: 94.1895, s0.loss_bbox: 0.1062, s1.loss_cls: 0.1379, s1.acc: 94.8730, s1.loss_bbox: 0.0943, s2.loss_cls: 0.0636, s2.acc: 96.7773, s2.loss_bbox: 0.0280, loss: 0.7403 2022-12-05 15:49:26,414 - mmdet - INFO - Epoch [13][2/4] lr: 1.831e-04, eta: 0:01:29, time: 0.287, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0072, loss_rpn_bbox: 0.0068, s0.loss_cls: 0.0911, s0.acc: 97.9492, s0.loss_bbox: 0.0531, s1.loss_cls: 0.0482, s1.acc: 98.5840, s1.loss_bbox: 0.0197, s2.loss_cls: 0.0251, s2.acc: 98.8281, s2.loss_bbox: 0.0074, loss: 0.2587 2022-12-05 15:49:26,681 - mmdet - INFO - Epoch [13][3/4] lr: 1.844e-04, eta: 0:01:27, time: 0.268, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0165, loss_rpn_bbox: 0.0091, s0.loss_cls: 0.2895, s0.acc: 93.6035, s0.loss_bbox: 0.0978, s1.loss_cls: 0.1682, s1.acc: 93.3594, s1.loss_bbox: 0.1030, s2.loss_cls: 0.0795, s2.acc: 95.2637, s2.loss_bbox: 0.0388, loss: 0.8023 2022-12-05 15:49:26,999 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:26,999 - mmdet - INFO - Epoch [13][4/4] lr: 1.855e-04, eta: 0:01:25, time: 0.315, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0531, loss_rpn_bbox: 0.0118, s0.loss_cls: 0.1856, s0.acc: 96.6797, s0.loss_bbox: 0.0581, s1.loss_cls: 0.0889, s1.acc: 96.8750, s1.loss_bbox: 0.0299, s2.loss_cls: 0.0438, s2.acc: 97.0703, s2.loss_bbox: 0.0106, loss: 0.4818 2022-12-05 15:49:30,219 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:30,220 - mmdet - INFO - Epoch(val) [13][4] loss_rpn_cls: 0.0375, loss_rpn_bbox: 0.0107, s0.loss_cls: 0.2193, s0.acc: 95.6055, s0.loss_bbox: 0.0624, s1.loss_cls: 0.1351, s1.acc: 95.1050, s1.loss_bbox: 0.0743, s2.loss_cls: 0.0600, s2.acc: 96.1426, s2.loss_bbox: 0.0394, loss: 0.6387 2022-12-05 15:49:32,872 - mmdet - INFO - Epoch [14][1/4] lr: 1.865e-04, eta: 0:01:27, time: 2.613, data_time: 2.320, memory: 6815, loss_rpn_cls: 0.0243, loss_rpn_bbox: 0.0086, s0.loss_cls: 0.2788, s0.acc: 94.1895, s0.loss_bbox: 0.0980, s1.loss_cls: 0.1281, s1.acc: 95.0195, s1.loss_bbox: 0.0600, s2.loss_cls: 0.0572, s2.acc: 95.8496, s2.loss_bbox: 0.0298, loss: 0.6848 2022-12-05 15:49:33,163 - mmdet - INFO - Epoch [14][2/4] lr: 1.874e-04, eta: 0:01:25, time: 0.292, data_time: 0.047, memory: 6815, loss_rpn_cls: 0.0037, loss_rpn_bbox: 0.0068, s0.loss_cls: 0.0916, s0.acc: 97.9492, s0.loss_bbox: 0.0468, s1.loss_cls: 0.0565, s1.acc: 98.0469, s1.loss_bbox: 0.0293, s2.loss_cls: 0.0266, s2.acc: 98.4375, s2.loss_bbox: 0.0080, loss: 0.2694 2022-12-05 15:49:33,444 - mmdet - INFO - Epoch [14][3/4] lr: 1.882e-04, eta: 0:01:23, time: 0.279, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0231, loss_rpn_bbox: 0.0124, s0.loss_cls: 0.2777, s0.acc: 94.2383, s0.loss_bbox: 0.0871, s1.loss_cls: 0.1376, s1.acc: 94.5801, s1.loss_bbox: 0.0759, s2.loss_cls: 0.0623, s2.acc: 96.2891, s2.loss_bbox: 0.0212, loss: 0.6973 2022-12-05 15:49:33,718 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:33,719 - mmdet - INFO - Epoch [14][4/4] lr: 1.889e-04, eta: 0:01:21, time: 0.276, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0359, loss_rpn_bbox: 0.0073, s0.loss_cls: 0.1686, s0.acc: 96.6309, s0.loss_bbox: 0.0599, s1.loss_cls: 0.0879, s1.acc: 96.6309, s1.loss_bbox: 0.0501, s2.loss_cls: 0.0424, s2.acc: 96.9238, s2.loss_bbox: 0.0184, loss: 0.4705 2022-12-05 15:49:36,893 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:36,894 - mmdet - INFO - Epoch(val) [14][4] loss_rpn_cls: 0.0384, loss_rpn_bbox: 0.0100, s0.loss_cls: 0.2092, s0.acc: 95.8496, s0.loss_bbox: 0.0602, s1.loss_cls: 0.1190, s1.acc: 95.6909, s1.loss_bbox: 0.0676, s2.loss_cls: 0.0506, s2.acc: 96.7773, s2.loss_bbox: 0.0324, loss: 0.5874 2022-12-05 15:49:39,556 - mmdet - INFO - Epoch [15][1/4] lr: 1.894e-04, eta: 0:01:22, time: 2.621, data_time: 2.338, memory: 6815, loss_rpn_cls: 0.0342, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.2071, s0.acc: 95.7520, s0.loss_bbox: 0.0581, s1.loss_cls: 0.1118, s1.acc: 95.7520, s1.loss_bbox: 0.0518, s2.loss_cls: 0.0494, s2.acc: 96.5332, s2.loss_bbox: 0.0230, loss: 0.5420 2022-12-05 15:49:39,838 - mmdet - INFO - Epoch [15][2/4] lr: 1.898e-04, eta: 0:01:20, time: 0.283, data_time: 0.047, memory: 6815, loss_rpn_cls: 0.0231, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.2968, s0.acc: 92.9199, s0.loss_bbox: 0.1189, s1.loss_cls: 0.1433, s1.acc: 93.6523, s1.loss_bbox: 0.0924, s2.loss_cls: 0.0650, s2.acc: 95.2637, s2.loss_bbox: 0.0273, loss: 0.7734 2022-12-05 15:49:40,113 - mmdet - INFO - Epoch [15][3/4] lr: 1.900e-04, eta: 0:01:19, time: 0.275, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0098, loss_rpn_bbox: 0.0070, s0.loss_cls: 0.0883, s0.acc: 97.9980, s0.loss_bbox: 0.0435, s1.loss_cls: 0.0572, s1.acc: 97.9492, s1.loss_bbox: 0.0329, s2.loss_cls: 0.0252, s2.acc: 98.4375, s2.loss_bbox: 0.0050, loss: 0.2689 2022-12-05 15:49:40,392 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:40,392 - mmdet - INFO - Epoch [15][4/4] lr: 1.902e-04, eta: 0:01:17, time: 0.277, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0266, loss_rpn_bbox: 0.0113, s0.loss_cls: 0.1919, s0.acc: 96.5332, s0.loss_bbox: 0.0387, s1.loss_cls: 0.1102, s1.acc: 96.0449, s1.loss_bbox: 0.0441, s2.loss_cls: 0.0516, s2.acc: 96.7285, s2.loss_bbox: 0.0247, loss: 0.4991 2022-12-05 15:49:43,578 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:43,578 - mmdet - INFO - Epoch(val) [15][4] loss_rpn_cls: 0.0284, loss_rpn_bbox: 0.0087, s0.loss_cls: 0.2281, s0.acc: 95.3491, s0.loss_bbox: 0.0706, s1.loss_cls: 0.1264, s1.acc: 95.3613, s1.loss_bbox: 0.0722, s2.loss_cls: 0.0539, s2.acc: 96.3623, s2.loss_bbox: 0.0370, loss: 0.6253 2022-12-05 15:49:46,235 - mmdet - INFO - Epoch [16][1/4] lr: 1.902e-04, eta: 0:01:18, time: 2.617, data_time: 2.320, memory: 6815, loss_rpn_cls: 0.0186, loss_rpn_bbox: 0.0119, s0.loss_cls: 0.3143, s0.acc: 92.8711, s0.loss_bbox: 0.1091, s1.loss_cls: 0.1505, s1.acc: 93.5547, s1.loss_bbox: 0.0803, s2.loss_cls: 0.0711, s2.acc: 94.7266, s2.loss_bbox: 0.0314, loss: 0.7872 2022-12-05 15:49:46,518 - mmdet - INFO - Epoch [16][2/4] lr: 1.901e-04, eta: 0:01:16, time: 0.286, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0227, loss_rpn_bbox: 0.0064, s0.loss_cls: 0.1950, s0.acc: 96.0938, s0.loss_bbox: 0.0536, s1.loss_cls: 0.1037, s1.acc: 96.0938, s1.loss_bbox: 0.0619, s2.loss_cls: 0.0465, s2.acc: 97.0703, s2.loss_bbox: 0.0213, loss: 0.5112 2022-12-05 15:49:46,806 - mmdet - INFO - Epoch [16][3/4] lr: 1.899e-04, eta: 0:01:14, time: 0.284, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0070, loss_rpn_bbox: 0.0063, s0.loss_cls: 0.1729, s0.acc: 96.7773, s0.loss_bbox: 0.0290, s1.loss_cls: 0.0981, s1.acc: 96.4355, s1.loss_bbox: 0.0340, s2.loss_cls: 0.0462, s2.acc: 96.9727, s2.loss_bbox: 0.0193, loss: 0.4127 2022-12-05 15:49:47,080 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:47,081 - mmdet - INFO - Epoch [16][4/4] lr: 1.895e-04, eta: 0:01:13, time: 0.277, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0070, loss_rpn_bbox: 0.0071, s0.loss_cls: 0.0837, s0.acc: 98.0469, s0.loss_bbox: 0.0391, s1.loss_cls: 0.0533, s1.acc: 98.0957, s1.loss_bbox: 0.0271, s2.loss_cls: 0.0240, s2.acc: 98.4863, s2.loss_bbox: 0.0040, loss: 0.2453 2022-12-05 15:49:47,197 - mmdet - INFO - Saving checkpoint at 16 epochs [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 15.9 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:49:49,578 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:49:49,591 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.001 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.005 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.004 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.050 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.050 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.050 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.075 2022-12-05 15:49:49,591 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:49,591 - mmdet - INFO - Epoch(val) [16][13] bbox_mAP: 0.0010, bbox_mAP_50: 0.0050, bbox_mAP_75: 0.0000, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0040, bbox_mAP_copypaste: 0.001 0.005 0.000 -1.000 0.000 0.004 Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:49:57,221 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:49:57,222 - mmdet - INFO - Epoch(val) [16][4] loss_rpn_cls: 0.0332, loss_rpn_bbox: 0.0102, s0.loss_cls: 0.2187, s0.acc: 95.5200, s0.loss_bbox: 0.0665, s1.loss_cls: 0.1249, s1.acc: 95.3491, s1.loss_bbox: 0.0736, s2.loss_cls: 0.0512, s2.acc: 96.5698, s2.loss_bbox: 0.0342, loss: 0.6124 2022-12-05 15:50:00,019 - mmdet - INFO - Epoch [17][1/4] lr: 1.891e-04, eta: 0:01:14, time: 2.759, data_time: 2.356, memory: 6815, loss_rpn_cls: 0.0008, loss_rpn_bbox: 0.0064, s0.loss_cls: 0.0878, s0.acc: 97.9492, s0.loss_bbox: 0.0435, s1.loss_cls: 0.0623, s1.acc: 97.7051, s1.loss_bbox: 0.0403, s2.loss_cls: 0.0275, s2.acc: 98.1445, s2.loss_bbox: 0.0110, loss: 0.2796 2022-12-05 15:50:00,342 - mmdet - INFO - Epoch [17][2/4] lr: 1.885e-04, eta: 0:01:12, time: 0.286, data_time: 0.046, memory: 6815, loss_rpn_cls: 0.0329, loss_rpn_bbox: 0.0116, s0.loss_cls: 0.2265, s0.acc: 95.9473, s0.loss_bbox: 0.0509, s1.loss_cls: 0.1149, s1.acc: 95.9961, s1.loss_bbox: 0.0470, s2.loss_cls: 0.0537, s2.acc: 96.5332, s2.loss_bbox: 0.0284, loss: 0.5659 2022-12-05 15:50:00,657 - mmdet - INFO - Epoch [17][3/4] lr: 1.878e-04, eta: 0:01:11, time: 0.354, data_time: 0.076, memory: 6815, loss_rpn_cls: 0.0264, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.2140, s0.acc: 95.3613, s0.loss_bbox: 0.0540, s1.loss_cls: 0.1152, s1.acc: 95.1172, s1.loss_bbox: 0.0468, s2.loss_cls: 0.0548, s2.acc: 95.6055, s2.loss_bbox: 0.0219, loss: 0.5397 2022-12-05 15:50:01,030 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:01,031 - mmdet - INFO - Epoch [17][4/4] lr: 1.869e-04, eta: 0:01:09, time: 0.370, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0259, loss_rpn_bbox: 0.0082, s0.loss_cls: 0.2148, s0.acc: 94.7266, s0.loss_bbox: 0.0823, s1.loss_cls: 0.1164, s1.acc: 95.0195, s1.loss_bbox: 0.0789, s2.loss_cls: 0.0527, s2.acc: 96.4355, s2.loss_bbox: 0.0249, loss: 0.6040 2022-12-05 15:50:04,478 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:04,479 - mmdet - INFO - Epoch(val) [17][4] loss_rpn_cls: 0.0227, loss_rpn_bbox: 0.0088, s0.loss_cls: 0.2356, s0.acc: 95.0439, s0.loss_bbox: 0.0698, s1.loss_cls: 0.1437, s1.acc: 94.5679, s1.loss_bbox: 0.0816, s2.loss_cls: 0.0589, s2.acc: 95.8130, s2.loss_bbox: 0.0426, loss: 0.6637 2022-12-05 15:50:07,195 - mmdet - INFO - Epoch [18][1/4] lr: 1.860e-04, eta: 0:01:10, time: 2.639, data_time: 2.359, memory: 6815, loss_rpn_cls: 0.0122, loss_rpn_bbox: 0.0092, s0.loss_cls: 0.2953, s0.acc: 92.7734, s0.loss_bbox: 0.1207, s1.loss_cls: 0.1490, s1.acc: 93.2617, s1.loss_bbox: 0.1015, s2.loss_cls: 0.0616, s2.acc: 95.1172, s2.loss_bbox: 0.0237, loss: 0.7732 2022-12-05 15:50:07,540 - mmdet - INFO - Epoch [18][2/4] lr: 1.849e-04, eta: 0:01:09, time: 0.370, data_time: 0.084, memory: 6815, loss_rpn_cls: 0.0099, loss_rpn_bbox: 0.0060, s0.loss_cls: 0.1950, s0.acc: 95.9961, s0.loss_bbox: 0.0355, s1.loss_cls: 0.1116, s1.acc: 95.7031, s1.loss_bbox: 0.0449, s2.loss_cls: 0.0557, s2.acc: 96.1426, s2.loss_bbox: 0.0273, loss: 0.4858 2022-12-05 15:50:07,925 - mmdet - INFO - Epoch [18][3/4] lr: 1.838e-04, eta: 0:01:07, time: 0.375, data_time: 0.052, memory: 6815, loss_rpn_cls: 0.0181, loss_rpn_bbox: 0.0104, s0.loss_cls: 0.2079, s0.acc: 95.2148, s0.loss_bbox: 0.0666, s1.loss_cls: 0.1077, s1.acc: 95.4590, s1.loss_bbox: 0.0671, s2.loss_cls: 0.0472, s2.acc: 96.8262, s2.loss_bbox: 0.0215, loss: 0.5465 2022-12-05 15:50:08,211 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:08,212 - mmdet - INFO - Epoch [18][4/4] lr: 1.825e-04, eta: 0:01:06, time: 0.310, data_time: 0.064, memory: 6815, loss_rpn_cls: 0.0029, loss_rpn_bbox: 0.0067, s0.loss_cls: 0.0798, s0.acc: 98.0469, s0.loss_bbox: 0.0358, s1.loss_cls: 0.0589, s1.acc: 97.7539, s1.loss_bbox: 0.0370, s2.loss_cls: 0.0256, s2.acc: 98.2422, s2.loss_bbox: 0.0061, loss: 0.2529 2022-12-05 15:50:11,563 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:11,564 - mmdet - INFO - Epoch(val) [18][4] loss_rpn_cls: 0.0300, loss_rpn_bbox: 0.0087, s0.loss_cls: 0.2110, s0.acc: 95.5566, s0.loss_bbox: 0.0583, s1.loss_cls: 0.1253, s1.acc: 95.1904, s1.loss_bbox: 0.0712, s2.loss_cls: 0.0534, s2.acc: 96.2646, s2.loss_bbox: 0.0362, loss: 0.5942 2022-12-05 15:50:14,366 - mmdet - INFO - Epoch [19][1/4] lr: 1.811e-04, eta: 0:01:06, time: 2.754, data_time: 2.359, memory: 6815, loss_rpn_cls: 0.0262, loss_rpn_bbox: 0.0084, s0.loss_cls: 0.1698, s0.acc: 96.5820, s0.loss_bbox: 0.0342, s1.loss_cls: 0.0967, s1.acc: 96.3867, s1.loss_bbox: 0.0441, s2.loss_cls: 0.0466, s2.acc: 96.8750, s2.loss_bbox: 0.0280, loss: 0.4539 2022-12-05 15:50:14,662 - mmdet - INFO - Epoch [19][2/4] lr: 1.796e-04, eta: 0:01:05, time: 0.279, data_time: 0.046, memory: 6815, loss_rpn_cls: 0.0190, loss_rpn_bbox: 0.0098, s0.loss_cls: 0.2983, s0.acc: 92.9688, s0.loss_bbox: 0.1024, s1.loss_cls: 0.1646, s1.acc: 92.7734, s1.loss_bbox: 0.0945, s2.loss_cls: 0.0677, s2.acc: 94.6777, s2.loss_bbox: 0.0256, loss: 0.7820 2022-12-05 15:50:14,997 - mmdet - INFO - Epoch [19][3/4] lr: 1.780e-04, eta: 0:01:03, time: 0.349, data_time: 0.065, memory: 6815, loss_rpn_cls: 0.0145, loss_rpn_bbox: 0.0037, s0.loss_cls: 0.2016, s0.acc: 94.6777, s0.loss_bbox: 0.0825, s1.loss_cls: 0.1152, s1.acc: 94.5801, s1.loss_bbox: 0.0930, s2.loss_cls: 0.0422, s2.acc: 96.3867, s2.loss_bbox: 0.0220, loss: 0.5747 2022-12-05 15:50:15,363 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:15,364 - mmdet - INFO - Epoch [19][4/4] lr: 1.762e-04, eta: 0:01:02, time: 0.376, data_time: 0.049, memory: 6815, loss_rpn_cls: 0.0081, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.0873, s0.acc: 97.8516, s0.loss_bbox: 0.0449, s1.loss_cls: 0.0557, s1.acc: 97.8516, s1.loss_bbox: 0.0432, s2.loss_cls: 0.0224, s2.acc: 98.5352, s2.loss_bbox: 0.0042, loss: 0.2724 2022-12-05 15:50:18,769 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:18,770 - mmdet - INFO - Epoch(val) [19][4] loss_rpn_cls: 0.0245, loss_rpn_bbox: 0.0090, s0.loss_cls: 0.2190, s0.acc: 95.4834, s0.loss_bbox: 0.0644, s1.loss_cls: 0.1251, s1.acc: 95.2637, s1.loss_bbox: 0.0783, s2.loss_cls: 0.0487, s2.acc: 96.6431, s2.loss_bbox: 0.0362, loss: 0.6052 2022-12-05 15:50:21,510 - mmdet - INFO - Epoch [20][1/4] lr: 1.744e-04, eta: 0:01:03, time: 2.701, data_time: 2.335, memory: 6815, loss_rpn_cls: 0.0158, loss_rpn_bbox: 0.0059, s0.loss_cls: 0.1672, s0.acc: 97.2168, s0.loss_bbox: 0.0251, s1.loss_cls: 0.0908, s1.acc: 96.9238, s1.loss_bbox: 0.0338, s2.loss_cls: 0.0427, s2.acc: 97.5098, s2.loss_bbox: 0.0150, loss: 0.3963 2022-12-05 15:50:21,888 - mmdet - INFO - Epoch [20][2/4] lr: 1.725e-04, eta: 0:01:01, time: 0.378, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0166, loss_rpn_bbox: 0.0074, s0.loss_cls: 0.2853, s0.acc: 92.1875, s0.loss_bbox: 0.1046, s1.loss_cls: 0.1570, s1.acc: 92.3828, s1.loss_bbox: 0.0909, s2.loss_cls: 0.0687, s2.acc: 94.0918, s2.loss_bbox: 0.0371, loss: 0.7675 2022-12-05 15:50:22,179 - mmdet - INFO - Epoch [20][3/4] lr: 1.705e-04, eta: 0:01:00, time: 0.291, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0019, loss_rpn_bbox: 0.0061, s0.loss_cls: 0.0852, s0.acc: 97.8516, s0.loss_bbox: 0.0420, s1.loss_cls: 0.0578, s1.acc: 97.7539, s1.loss_bbox: 0.0392, s2.loss_cls: 0.0244, s2.acc: 98.3398, s2.loss_bbox: 0.0063, loss: 0.2630 2022-12-05 15:50:22,550 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:22,551 - mmdet - INFO - Epoch [20][4/4] lr: 1.684e-04, eta: 0:00:58, time: 0.373, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0161, loss_rpn_bbox: 0.0106, s0.loss_cls: 0.1822, s0.acc: 96.6309, s0.loss_bbox: 0.0477, s1.loss_cls: 0.0966, s1.acc: 96.5820, s1.loss_bbox: 0.0496, s2.loss_cls: 0.0420, s2.acc: 97.4609, s2.loss_bbox: 0.0184, loss: 0.4632 [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 15.3 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:50:23,578 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:50:23,591 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.008 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.006 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.050 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.050 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.050 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.075 2022-12-05 15:50:23,592 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:23,592 - mmdet - INFO - Epoch(val) [20][13] bbox_mAP: 0.0020, bbox_mAP_50: 0.0080, bbox_mAP_75: 0.0000, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0060, bbox_mAP_copypaste: 0.002 0.008 0.000 -1.000 0.000 0.006 2022-12-05 15:50:27,477 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:27,478 - mmdet - INFO - Epoch(val) [20][4] loss_rpn_cls: 0.0274, loss_rpn_bbox: 0.0088, s0.loss_cls: 0.2012, s0.acc: 95.8008, s0.loss_bbox: 0.0554, s1.loss_cls: 0.1190, s1.acc: 95.4956, s1.loss_bbox: 0.0681, s2.loss_cls: 0.0501, s2.acc: 96.5454, s2.loss_bbox: 0.0358, loss: 0.5657 2022-12-05 15:50:30,170 - mmdet - INFO - Epoch [21][1/4] lr: 1.661e-04, eta: 0:00:59, time: 2.644, data_time: 2.341, memory: 6815, loss_rpn_cls: 0.0269, loss_rpn_bbox: 0.0114, s0.loss_cls: 0.2698, s0.acc: 93.7012, s0.loss_bbox: 0.0910, s1.loss_cls: 0.1385, s1.acc: 94.0430, s1.loss_bbox: 0.0787, s2.loss_cls: 0.0609, s2.acc: 95.6055, s2.loss_bbox: 0.0291, loss: 0.7063 2022-12-05 15:50:30,542 - mmdet - INFO - Epoch [21][2/4] lr: 1.638e-04, eta: 0:00:57, time: 0.361, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0055, loss_rpn_bbox: 0.0057, s0.loss_cls: 0.0827, s0.acc: 97.8516, s0.loss_bbox: 0.0391, s1.loss_cls: 0.0558, s1.acc: 97.8516, s1.loss_bbox: 0.0323, s2.loss_cls: 0.0245, s2.acc: 98.3398, s2.loss_bbox: 0.0048, loss: 0.2504 2022-12-05 15:50:30,821 - mmdet - INFO - Epoch [21][3/4] lr: 1.615e-04, eta: 0:00:56, time: 0.299, data_time: 0.057, memory: 6815, loss_rpn_cls: 0.0186, loss_rpn_bbox: 0.0050, s0.loss_cls: 0.2826, s0.acc: 92.0410, s0.loss_bbox: 0.1093, s1.loss_cls: 0.1670, s1.acc: 91.6992, s1.loss_bbox: 0.0801, s2.loss_cls: 0.0776, s2.acc: 92.8711, s2.loss_bbox: 0.0267, loss: 0.7668 2022-12-05 15:50:31,191 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:31,192 - mmdet - INFO - Epoch [21][4/4] lr: 1.590e-04, eta: 0:00:55, time: 0.367, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0195, loss_rpn_bbox: 0.0054, s0.loss_cls: 0.1640, s0.acc: 96.1914, s0.loss_bbox: 0.0414, s1.loss_cls: 0.1004, s1.acc: 95.7520, s1.loss_bbox: 0.0632, s2.loss_cls: 0.0436, s2.acc: 96.9238, s2.loss_bbox: 0.0269, loss: 0.4644 2022-12-05 15:50:34,668 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:34,669 - mmdet - INFO - Epoch(val) [21][4] loss_rpn_cls: 0.0299, loss_rpn_bbox: 0.0090, s0.loss_cls: 0.2251, s0.acc: 95.1050, s0.loss_bbox: 0.0655, s1.loss_cls: 0.1356, s1.acc: 94.8608, s1.loss_bbox: 0.0770, s2.loss_cls: 0.0538, s2.acc: 96.2158, s2.loss_bbox: 0.0385, loss: 0.6345 2022-12-05 15:50:37,344 - mmdet - INFO - Epoch [22][1/4] lr: 1.564e-04, eta: 0:00:55, time: 2.634, data_time: 2.321, memory: 6815, loss_rpn_cls: 0.0008, loss_rpn_bbox: 0.0056, s0.loss_cls: 0.0802, s0.acc: 97.8516, s0.loss_bbox: 0.0367, s1.loss_cls: 0.0533, s1.acc: 97.9492, s1.loss_bbox: 0.0278, s2.loss_cls: 0.0242, s2.acc: 98.3887, s2.loss_bbox: 0.0048, loss: 0.2334 2022-12-05 15:50:37,693 - mmdet - INFO - Epoch [22][2/4] lr: 1.538e-04, eta: 0:00:54, time: 0.350, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0135, loss_rpn_bbox: 0.0072, s0.loss_cls: 0.2302, s0.acc: 94.9707, s0.loss_bbox: 0.0450, s1.loss_cls: 0.1331, s1.acc: 94.3359, s1.loss_bbox: 0.0530, s2.loss_cls: 0.0664, s2.acc: 94.8730, s2.loss_bbox: 0.0321, loss: 0.5804 2022-12-05 15:50:38,089 - mmdet - INFO - Epoch [22][3/4] lr: 1.511e-04, eta: 0:00:52, time: 0.394, data_time: 0.050, memory: 6815, loss_rpn_cls: 0.0062, loss_rpn_bbox: 0.0041, s0.loss_cls: 0.1464, s0.acc: 97.1680, s0.loss_bbox: 0.0377, s1.loss_cls: 0.0820, s1.acc: 97.1191, s1.loss_bbox: 0.0465, s2.loss_cls: 0.0378, s2.acc: 97.8027, s2.loss_bbox: 0.0191, loss: 0.3796 2022-12-05 15:50:38,508 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:38,509 - mmdet - INFO - Epoch [22][4/4] lr: 1.483e-04, eta: 0:00:51, time: 0.421, data_time: 0.044, memory: 6815, loss_rpn_cls: 0.0133, loss_rpn_bbox: 0.0118, s0.loss_cls: 0.2725, s0.acc: 92.9199, s0.loss_bbox: 0.0962, s1.loss_cls: 0.1510, s1.acc: 92.9688, s1.loss_bbox: 0.0763, s2.loss_cls: 0.0721, s2.acc: 93.8965, s2.loss_bbox: 0.0301, loss: 0.7233 2022-12-05 15:50:41,911 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:41,912 - mmdet - INFO - Epoch(val) [22][4] loss_rpn_cls: 0.0363, loss_rpn_bbox: 0.0101, s0.loss_cls: 0.1927, s0.acc: 95.9473, s0.loss_bbox: 0.0572, s1.loss_cls: 0.1064, s1.acc: 95.8984, s1.loss_bbox: 0.0618, s2.loss_cls: 0.0440, s2.acc: 96.9604, s2.loss_bbox: 0.0306, loss: 0.5390 2022-12-05 15:50:44,659 - mmdet - INFO - Epoch [23][1/4] lr: 1.454e-04, eta: 0:00:51, time: 2.709, data_time: 2.350, memory: 6815, loss_rpn_cls: 0.0101, loss_rpn_bbox: 0.0088, s0.loss_cls: 0.1867, s0.acc: 96.4355, s0.loss_bbox: 0.0531, s1.loss_cls: 0.0969, s1.acc: 96.4844, s1.loss_bbox: 0.0496, s2.loss_cls: 0.0434, s2.acc: 97.2168, s2.loss_bbox: 0.0208, loss: 0.4695 2022-12-05 15:50:45,020 - mmdet - INFO - Epoch [23][2/4] lr: 1.425e-04, eta: 0:00:50, time: 0.362, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0113, loss_rpn_bbox: 0.0030, s0.loss_cls: 0.2192, s0.acc: 93.9941, s0.loss_bbox: 0.0618, s1.loss_cls: 0.1429, s1.acc: 93.0176, s1.loss_bbox: 0.0654, s2.loss_cls: 0.0694, s2.acc: 93.4570, s2.loss_bbox: 0.0329, loss: 0.6061 2022-12-05 15:50:45,403 - mmdet - INFO - Epoch [23][3/4] lr: 1.395e-04, eta: 0:00:49, time: 0.383, data_time: 0.038, memory: 6815, loss_rpn_cls: 0.0032, loss_rpn_bbox: 0.0056, s0.loss_cls: 0.0791, s0.acc: 97.8027, s0.loss_bbox: 0.0376, s1.loss_cls: 0.0557, s1.acc: 97.7539, s1.loss_bbox: 0.0313, s2.loss_cls: 0.0259, s2.acc: 98.1934, s2.loss_bbox: 0.0063, loss: 0.2447 2022-12-05 15:50:45,691 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:45,691 - mmdet - INFO - Epoch [23][4/4] lr: 1.365e-04, eta: 0:00:47, time: 0.286, data_time: 0.038, memory: 6815, loss_rpn_cls: 0.0168, loss_rpn_bbox: 0.0076, s0.loss_cls: 0.2383, s0.acc: 93.4082, s0.loss_bbox: 0.0688, s1.loss_cls: 0.1427, s1.acc: 93.1152, s1.loss_bbox: 0.0759, s2.loss_cls: 0.0699, s2.acc: 94.1406, s2.loss_bbox: 0.0430, loss: 0.6630 2022-12-05 15:50:49,016 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:49,017 - mmdet - INFO - Epoch(val) [23][4] loss_rpn_cls: 0.0311, loss_rpn_bbox: 0.0085, s0.loss_cls: 0.2233, s0.acc: 95.0928, s0.loss_bbox: 0.0671, s1.loss_cls: 0.1320, s1.acc: 94.9219, s1.loss_bbox: 0.0767, s2.loss_cls: 0.0513, s2.acc: 96.5210, s2.loss_bbox: 0.0337, loss: 0.6237 2022-12-05 15:50:51,748 - mmdet - INFO - Epoch [24][1/4] lr: 1.334e-04, eta: 0:00:47, time: 2.689, data_time: 2.336, memory: 6815, loss_rpn_cls: 0.0207, loss_rpn_bbox: 0.0086, s0.loss_cls: 0.2490, s0.acc: 93.4570, s0.loss_bbox: 0.0812, s1.loss_cls: 0.1479, s1.acc: 92.9688, s1.loss_bbox: 0.0814, s2.loss_cls: 0.0718, s2.acc: 93.8965, s2.loss_bbox: 0.0340, loss: 0.6946 2022-12-05 15:50:52,113 - mmdet - INFO - Epoch [24][2/4] lr: 1.302e-04, eta: 0:00:46, time: 0.367, data_time: 0.044, memory: 6815, loss_rpn_cls: 0.0081, loss_rpn_bbox: 0.0069, s0.loss_cls: 0.1981, s0.acc: 96.3379, s0.loss_bbox: 0.0337, s1.loss_cls: 0.1082, s1.acc: 95.8984, s1.loss_bbox: 0.0331, s2.loss_cls: 0.0559, s2.acc: 96.1426, s2.loss_bbox: 0.0188, loss: 0.4629 2022-12-05 15:50:52,467 - mmdet - INFO - Epoch [24][3/4] lr: 1.270e-04, eta: 0:00:45, time: 0.357, data_time: 0.043, memory: 6815, loss_rpn_cls: 0.0097, loss_rpn_bbox: 0.0071, s0.loss_cls: 0.2136, s0.acc: 94.8242, s0.loss_bbox: 0.0466, s1.loss_cls: 0.1303, s1.acc: 94.0918, s1.loss_bbox: 0.0638, s2.loss_cls: 0.0659, s2.acc: 94.6289, s2.loss_bbox: 0.0372, loss: 0.5741 2022-12-05 15:50:52,850 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:52,851 - mmdet - INFO - Epoch [24][4/4] lr: 1.238e-04, eta: 0:00:44, time: 0.383, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0065, loss_rpn_bbox: 0.0058, s0.loss_cls: 0.0636, s0.acc: 98.2422, s0.loss_bbox: 0.0245, s1.loss_cls: 0.0520, s1.acc: 97.9004, s1.loss_bbox: 0.0237, s2.loss_cls: 0.0256, s2.acc: 98.1934, s2.loss_bbox: 0.0048, loss: 0.2064 2022-12-05 15:50:52,952 - mmdet - INFO - Saving checkpoint at 24 epochs [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 16.5 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:50:55,284 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:50:55,297 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.006 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.015 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.010 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.067 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.067 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.067 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.100 2022-12-05 15:50:55,298 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:50:55,298 - mmdet - INFO - Epoch(val) [24][13] bbox_mAP: 0.0060, bbox_mAP_50: 0.0150, bbox_mAP_75: 0.0000, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0100, bbox_mAP_copypaste: 0.006 0.015 0.000 -1.000 0.000 0.010 Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:51:02,977 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:02,978 - mmdet - INFO - Epoch(val) [24][4] loss_rpn_cls: 0.0309, loss_rpn_bbox: 0.0081, s0.loss_cls: 0.2139, s0.acc: 95.3857, s0.loss_bbox: 0.0605, s1.loss_cls: 0.1268, s1.acc: 95.1294, s1.loss_bbox: 0.0692, s2.loss_cls: 0.0538, s2.acc: 96.1548, s2.loss_bbox: 0.0382, loss: 0.6015 2022-12-05 15:51:05,661 - mmdet - INFO - Epoch [25][1/4] lr: 1.205e-04, eta: 0:00:44, time: 2.644, data_time: 2.372, memory: 6815, loss_rpn_cls: 0.0045, loss_rpn_bbox: 0.0052, s0.loss_cls: 0.0688, s0.acc: 98.0469, s0.loss_bbox: 0.0280, s1.loss_cls: 0.0536, s1.acc: 97.8516, s1.loss_bbox: 0.0234, s2.loss_cls: 0.0259, s2.acc: 98.1934, s2.loss_bbox: 0.0052, loss: 0.2146 2022-12-05 15:51:06,025 - mmdet - INFO - Epoch [25][2/4] lr: 1.172e-04, eta: 0:00:42, time: 0.362, data_time: 0.047, memory: 6815, loss_rpn_cls: 0.0246, loss_rpn_bbox: 0.0039, s0.loss_cls: 0.1940, s0.acc: 95.1172, s0.loss_bbox: 0.0455, s1.loss_cls: 0.1252, s1.acc: 94.1406, s1.loss_bbox: 0.0552, s2.loss_cls: 0.0631, s2.acc: 94.4336, s2.loss_bbox: 0.0371, loss: 0.5486 2022-12-05 15:51:06,396 - mmdet - INFO - Epoch [25][3/4] lr: 1.138e-04, eta: 0:00:41, time: 0.372, data_time: 0.043, memory: 6815, loss_rpn_cls: 0.0105, loss_rpn_bbox: 0.0096, s0.loss_cls: 0.2460, s0.acc: 93.5547, s0.loss_bbox: 0.0813, s1.loss_cls: 0.1370, s1.acc: 93.5547, s1.loss_bbox: 0.0871, s2.loss_cls: 0.0650, s2.acc: 94.9219, s2.loss_bbox: 0.0339, loss: 0.6704 2022-12-05 15:51:06,764 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:06,764 - mmdet - INFO - Epoch [25][4/4] lr: 1.105e-04, eta: 0:00:40, time: 0.370, data_time: 0.044, memory: 6815, loss_rpn_cls: 0.0087, loss_rpn_bbox: 0.0101, s0.loss_cls: 0.2271, s0.acc: 93.7988, s0.loss_bbox: 0.0754, s1.loss_cls: 0.1324, s1.acc: 93.4082, s1.loss_bbox: 0.0670, s2.loss_cls: 0.0629, s2.acc: 94.4824, s2.loss_bbox: 0.0281, loss: 0.6117 2022-12-05 15:51:10,088 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:10,089 - mmdet - INFO - Epoch(val) [25][4] loss_rpn_cls: 0.0273, loss_rpn_bbox: 0.0089, s0.loss_cls: 0.2135, s0.acc: 95.4346, s0.loss_bbox: 0.0681, s1.loss_cls: 0.1170, s1.acc: 95.4468, s1.loss_bbox: 0.0681, s2.loss_cls: 0.0476, s2.acc: 96.7285, s2.loss_bbox: 0.0316, loss: 0.5820 2022-12-05 15:51:12,809 - mmdet - INFO - Epoch [26][1/4] lr: 1.070e-04, eta: 0:00:40, time: 2.681, data_time: 2.318, memory: 6815, loss_rpn_cls: 0.0179, loss_rpn_bbox: 0.0070, s0.loss_cls: 0.1750, s0.acc: 95.8496, s0.loss_bbox: 0.0440, s1.loss_cls: 0.0988, s1.acc: 95.7520, s1.loss_bbox: 0.0537, s2.loss_cls: 0.0455, s2.acc: 96.4844, s2.loss_bbox: 0.0342, loss: 0.4761 2022-12-05 15:51:13,194 - mmdet - INFO - Epoch [26][2/4] lr: 1.036e-04, eta: 0:00:39, time: 0.385, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0136, loss_rpn_bbox: 0.0081, s0.loss_cls: 0.2066, s0.acc: 94.4336, s0.loss_bbox: 0.0761, s1.loss_cls: 0.1175, s1.acc: 94.2871, s1.loss_bbox: 0.0827, s2.loss_cls: 0.0563, s2.acc: 95.6055, s2.loss_bbox: 0.0361, loss: 0.5970 2022-12-05 15:51:13,561 - mmdet - INFO - Epoch [26][3/4] lr: 1.002e-04, eta: 0:00:38, time: 0.368, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0028, loss_rpn_bbox: 0.0053, s0.loss_cls: 0.0693, s0.acc: 97.9980, s0.loss_bbox: 0.0262, s1.loss_cls: 0.0524, s1.acc: 97.8516, s1.loss_bbox: 0.0253, s2.loss_cls: 0.0273, s2.acc: 98.0469, s2.loss_bbox: 0.0065, loss: 0.2152 2022-12-05 15:51:13,943 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:13,944 - mmdet - INFO - Epoch [26][4/4] lr: 9.671e-05, eta: 0:00:36, time: 0.380, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0091, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.1868, s0.acc: 95.8496, s0.loss_bbox: 0.0428, s1.loss_cls: 0.1113, s1.acc: 95.1660, s1.loss_bbox: 0.0335, s2.loss_cls: 0.0598, s2.acc: 95.1172, s2.loss_bbox: 0.0172, loss: 0.4671 2022-12-05 15:51:17,271 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:17,272 - mmdet - INFO - Epoch(val) [26][4] loss_rpn_cls: 0.0347, loss_rpn_bbox: 0.0098, s0.loss_cls: 0.2001, s0.acc: 95.6909, s0.loss_bbox: 0.0648, s1.loss_cls: 0.1052, s1.acc: 95.9229, s1.loss_bbox: 0.0571, s2.loss_cls: 0.0462, s2.acc: 96.8628, s2.loss_bbox: 0.0284, loss: 0.5463 2022-12-05 15:51:19,934 - mmdet - INFO - Epoch [27][1/4] lr: 9.325e-05, eta: 0:00:36, time: 2.622, data_time: 2.330, memory: 6815, loss_rpn_cls: 0.0199, loss_rpn_bbox: 0.0075, s0.loss_cls: 0.2316, s0.acc: 93.2129, s0.loss_bbox: 0.0854, s1.loss_cls: 0.1489, s1.acc: 92.4805, s1.loss_bbox: 0.0905, s2.loss_cls: 0.0654, s2.acc: 94.1895, s2.loss_bbox: 0.0340, loss: 0.6833 2022-12-05 15:51:20,306 - mmdet - INFO - Epoch [27][2/4] lr: 8.978e-05, eta: 0:00:35, time: 0.370, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0092, loss_rpn_bbox: 0.0072, s0.loss_cls: 0.1872, s0.acc: 96.5820, s0.loss_bbox: 0.0358, s1.loss_cls: 0.1004, s1.acc: 96.3379, s1.loss_bbox: 0.0318, s2.loss_cls: 0.0509, s2.acc: 96.6797, s2.loss_bbox: 0.0153, loss: 0.4379 2022-12-05 15:51:20,590 - mmdet - INFO - Epoch [27][3/4] lr: 8.631e-05, eta: 0:00:34, time: 0.284, data_time: 0.043, memory: 6815, loss_rpn_cls: 0.0149, loss_rpn_bbox: 0.0103, s0.loss_cls: 0.1801, s0.acc: 95.8984, s0.loss_bbox: 0.0331, s1.loss_cls: 0.1028, s1.acc: 95.6055, s1.loss_bbox: 0.0389, s2.loss_cls: 0.0531, s2.acc: 95.7031, s2.loss_bbox: 0.0329, loss: 0.4660 2022-12-05 15:51:20,952 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:20,953 - mmdet - INFO - Epoch [27][4/4] lr: 8.284e-05, eta: 0:00:33, time: 0.364, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0048, loss_rpn_bbox: 0.0055, s0.loss_cls: 0.0813, s0.acc: 97.6562, s0.loss_bbox: 0.0291, s1.loss_cls: 0.0575, s1.acc: 97.5586, s1.loss_bbox: 0.0240, s2.loss_cls: 0.0286, s2.acc: 97.9004, s2.loss_bbox: 0.0027, loss: 0.2336 2022-12-05 15:51:24,257 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:24,257 - mmdet - INFO - Epoch(val) [27][4] loss_rpn_cls: 0.0285, loss_rpn_bbox: 0.0093, s0.loss_cls: 0.1856, s0.acc: 95.9229, s0.loss_bbox: 0.0513, s1.loss_cls: 0.1068, s1.acc: 95.8374, s1.loss_bbox: 0.0566, s2.loss_cls: 0.0447, s2.acc: 96.8994, s2.loss_bbox: 0.0280, loss: 0.5107 2022-12-05 15:51:26,878 - mmdet - INFO - Epoch [28][1/4] lr: 7.939e-05, eta: 0:00:32, time: 2.582, data_time: 2.308, memory: 6815, loss_rpn_cls: 0.0303, loss_rpn_bbox: 0.0061, s0.loss_cls: 0.2405, s0.acc: 92.8223, s0.loss_bbox: 0.0767, s1.loss_cls: 0.1458, s1.acc: 92.4316, s1.loss_bbox: 0.0840, s2.loss_cls: 0.0760, s2.acc: 93.3594, s2.loss_bbox: 0.0525, loss: 0.7118 2022-12-05 15:51:27,263 - mmdet - INFO - Epoch [28][2/4] lr: 7.595e-05, eta: 0:00:31, time: 0.343, data_time: 0.045, memory: 6815, loss_rpn_cls: 0.0096, loss_rpn_bbox: 0.0061, s0.loss_cls: 0.1920, s0.acc: 95.7031, s0.loss_bbox: 0.0512, s1.loss_cls: 0.1035, s1.acc: 95.6055, s1.loss_bbox: 0.0387, s2.loss_cls: 0.0500, s2.acc: 95.9961, s2.loss_bbox: 0.0179, loss: 0.4690 2022-12-05 15:51:27,568 - mmdet - INFO - Epoch [28][3/4] lr: 7.252e-05, eta: 0:00:30, time: 0.348, data_time: 0.082, memory: 6815, loss_rpn_cls: 0.0007, loss_rpn_bbox: 0.0052, s0.loss_cls: 0.0719, s0.acc: 97.8027, s0.loss_bbox: 0.0313, s1.loss_cls: 0.0536, s1.acc: 97.7539, s1.loss_bbox: 0.0223, s2.loss_cls: 0.0274, s2.acc: 97.9980, s2.loss_bbox: 0.0064, loss: 0.2189 2022-12-05 15:51:27,930 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:27,931 - mmdet - INFO - Epoch [28][4/4] lr: 6.913e-05, eta: 0:00:29, time: 0.363, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0112, loss_rpn_bbox: 0.0070, s0.loss_cls: 0.2250, s0.acc: 93.5059, s0.loss_bbox: 0.0694, s1.loss_cls: 0.1460, s1.acc: 92.5293, s1.loss_bbox: 0.0695, s2.loss_cls: 0.0753, s2.acc: 93.2617, s2.loss_bbox: 0.0296, loss: 0.6330 [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 16.5 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:51:28,884 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:51:28,899 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.010 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.022 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.003 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.019 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.275 2022-12-05 15:51:28,900 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:28,900 - mmdet - INFO - Epoch(val) [28][13] bbox_mAP: 0.0100, bbox_mAP_50: 0.0220, bbox_mAP_75: 0.0030, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0190, bbox_mAP_copypaste: 0.010 0.022 0.003 -1.000 0.000 0.019 2022-12-05 15:51:32,701 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:32,701 - mmdet - INFO - Epoch(val) [28][4] loss_rpn_cls: 0.0183, loss_rpn_bbox: 0.0078, s0.loss_cls: 0.2257, s0.acc: 95.0317, s0.loss_bbox: 0.0690, s1.loss_cls: 0.1306, s1.acc: 94.9585, s1.loss_bbox: 0.0720, s2.loss_cls: 0.0561, s2.acc: 96.0693, s2.loss_bbox: 0.0376, loss: 0.6171 2022-12-05 15:51:35,360 - mmdet - INFO - Epoch [29][1/4] lr: 6.575e-05, eta: 0:00:29, time: 2.620, data_time: 2.346, memory: 6815, loss_rpn_cls: 0.0138, loss_rpn_bbox: 0.0065, s0.loss_cls: 0.1967, s0.acc: 95.0195, s0.loss_bbox: 0.0474, s1.loss_cls: 0.1201, s1.acc: 94.3848, s1.loss_bbox: 0.0534, s2.loss_cls: 0.0653, s2.acc: 94.4824, s2.loss_bbox: 0.0374, loss: 0.5406 2022-12-05 15:51:35,751 - mmdet - INFO - Epoch [29][2/4] lr: 6.242e-05, eta: 0:00:28, time: 0.389, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0135, loss_rpn_bbox: 0.0091, s0.loss_cls: 0.2023, s0.acc: 94.8730, s0.loss_bbox: 0.0563, s1.loss_cls: 0.1148, s1.acc: 94.6777, s1.loss_bbox: 0.0617, s2.loss_cls: 0.0583, s2.acc: 95.5566, s2.loss_bbox: 0.0320, loss: 0.5481 2022-12-05 15:51:36,046 - mmdet - INFO - Epoch [29][3/4] lr: 5.911e-05, eta: 0:00:26, time: 0.293, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0052, loss_rpn_bbox: 0.0051, s0.loss_cls: 0.2168, s0.acc: 93.4570, s0.loss_bbox: 0.0789, s1.loss_cls: 0.1441, s1.acc: 92.6270, s1.loss_bbox: 0.0876, s2.loss_cls: 0.0679, s2.acc: 93.8965, s2.loss_bbox: 0.0379, loss: 0.6436 2022-12-05 15:51:36,376 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:36,377 - mmdet - INFO - Epoch [29][4/4] lr: 5.585e-05, eta: 0:00:25, time: 0.296, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0076, loss_rpn_bbox: 0.0054, s0.loss_cls: 0.0696, s0.acc: 97.8516, s0.loss_bbox: 0.0279, s1.loss_cls: 0.0488, s1.acc: 97.9492, s1.loss_bbox: 0.0166, s2.loss_cls: 0.0283, s2.acc: 97.8516, s2.loss_bbox: 0.0096, loss: 0.2137 2022-12-05 15:51:39,722 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:39,723 - mmdet - INFO - Epoch(val) [29][4] loss_rpn_cls: 0.0364, loss_rpn_bbox: 0.0092, s0.loss_cls: 0.2019, s0.acc: 95.6177, s0.loss_bbox: 0.0588, s1.loss_cls: 0.1168, s1.acc: 95.4712, s1.loss_bbox: 0.0633, s2.loss_cls: 0.0500, s2.acc: 96.5454, s2.loss_bbox: 0.0327, loss: 0.5692 2022-12-05 15:51:42,487 - mmdet - INFO - Epoch [30][1/4] lr: 5.264e-05, eta: 0:00:25, time: 2.711, data_time: 2.350, memory: 6815, loss_rpn_cls: 0.0108, loss_rpn_bbox: 0.0069, s0.loss_cls: 0.1342, s0.acc: 97.4121, s0.loss_bbox: 0.0284, s1.loss_cls: 0.0751, s1.acc: 97.3633, s1.loss_bbox: 0.0371, s2.loss_cls: 0.0339, s2.acc: 97.9980, s2.loss_bbox: 0.0168, loss: 0.3431 2022-12-05 15:51:42,854 - mmdet - INFO - Epoch [30][2/4] lr: 4.948e-05, eta: 0:00:24, time: 0.376, data_time: 0.051, memory: 6815, loss_rpn_cls: 0.0279, loss_rpn_bbox: 0.0083, s0.loss_cls: 0.1494, s0.acc: 96.7773, s0.loss_bbox: 0.0326, s1.loss_cls: 0.0969, s1.acc: 95.9961, s1.loss_bbox: 0.0397, s2.loss_cls: 0.0514, s2.acc: 95.9473, s2.loss_bbox: 0.0280, loss: 0.4340 2022-12-05 15:51:43,224 - mmdet - INFO - Epoch [30][3/4] lr: 4.637e-05, eta: 0:00:23, time: 0.354, data_time: 0.042, memory: 6815, loss_rpn_cls: 0.0038, loss_rpn_bbox: 0.0051, s0.loss_cls: 0.0708, s0.acc: 97.8027, s0.loss_bbox: 0.0305, s1.loss_cls: 0.0515, s1.acc: 97.8516, s1.loss_bbox: 0.0208, s2.loss_cls: 0.0272, s2.acc: 97.9980, s2.loss_bbox: 0.0096, loss: 0.2194 2022-12-05 15:51:43,506 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:43,506 - mmdet - INFO - Epoch [30][4/4] lr: 4.332e-05, eta: 0:00:22, time: 0.300, data_time: 0.057, memory: 6815, loss_rpn_cls: 0.0140, loss_rpn_bbox: 0.0090, s0.loss_cls: 0.2600, s0.acc: 92.6270, s0.loss_bbox: 0.0613, s1.loss_cls: 0.1658, s1.acc: 91.2598, s1.loss_bbox: 0.0774, s2.loss_cls: 0.0882, s2.acc: 91.8457, s2.loss_bbox: 0.0485, loss: 0.7243 2022-12-05 15:51:46,856 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:46,856 - mmdet - INFO - Epoch(val) [30][4] loss_rpn_cls: 0.0256, loss_rpn_bbox: 0.0079, s0.loss_cls: 0.2169, s0.acc: 95.1294, s0.loss_bbox: 0.0647, s1.loss_cls: 0.1261, s1.acc: 95.0317, s1.loss_bbox: 0.0701, s2.loss_cls: 0.0512, s2.acc: 96.3623, s2.loss_bbox: 0.0318, loss: 0.5945 2022-12-05 15:51:49,675 - mmdet - INFO - Epoch [31][1/4] lr: 4.034e-05, eta: 0:00:21, time: 2.772, data_time: 2.406, memory: 6815, loss_rpn_cls: 0.0061, loss_rpn_bbox: 0.0097, s0.loss_cls: 0.1573, s0.acc: 96.8262, s0.loss_bbox: 0.0350, s1.loss_cls: 0.0932, s1.acc: 96.4355, s1.loss_bbox: 0.0434, s2.loss_cls: 0.0449, s2.acc: 96.9238, s2.loss_bbox: 0.0215, loss: 0.4111 2022-12-05 15:51:50,055 - mmdet - INFO - Epoch [31][2/4] lr: 3.743e-05, eta: 0:00:20, time: 0.386, data_time: 0.049, memory: 6815, loss_rpn_cls: 0.0105, loss_rpn_bbox: 0.0061, s0.loss_cls: 0.2331, s0.acc: 92.8223, s0.loss_bbox: 0.0817, s1.loss_cls: 0.1436, s1.acc: 92.1875, s1.loss_bbox: 0.0931, s2.loss_cls: 0.0718, s2.acc: 93.3105, s2.loss_bbox: 0.0580, loss: 0.6981 2022-12-05 15:51:50,333 - mmdet - INFO - Epoch [31][3/4] lr: 3.459e-05, eta: 0:00:19, time: 0.280, data_time: 0.043, memory: 6815, loss_rpn_cls: 0.0161, loss_rpn_bbox: 0.0038, s0.loss_cls: 0.1903, s0.acc: 94.9707, s0.loss_bbox: 0.0393, s1.loss_cls: 0.1321, s1.acc: 93.5059, s1.loss_bbox: 0.0555, s2.loss_cls: 0.0686, s2.acc: 93.5547, s2.loss_bbox: 0.0419, loss: 0.5476 2022-12-05 15:51:50,708 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:50,708 - mmdet - INFO - Epoch [31][4/4] lr: 3.183e-05, eta: 0:00:18, time: 0.374, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0036, loss_rpn_bbox: 0.0053, s0.loss_cls: 0.0746, s0.acc: 97.6562, s0.loss_bbox: 0.0346, s1.loss_cls: 0.0563, s1.acc: 97.5586, s1.loss_bbox: 0.0211, s2.loss_cls: 0.0319, s2.acc: 97.5098, s2.loss_bbox: 0.0101, loss: 0.2376 2022-12-05 15:51:54,115 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:54,115 - mmdet - INFO - Epoch(val) [31][4] loss_rpn_cls: 0.0244, loss_rpn_bbox: 0.0085, s0.loss_cls: 0.2200, s0.acc: 95.1538, s0.loss_bbox: 0.0642, s1.loss_cls: 0.1282, s1.acc: 95.0073, s1.loss_bbox: 0.0725, s2.loss_cls: 0.0515, s2.acc: 96.3623, s2.loss_bbox: 0.0367, loss: 0.6060 2022-12-05 15:51:56,918 - mmdet - INFO - Epoch [32][1/4] lr: 2.916e-05, eta: 0:00:17, time: 2.729, data_time: 2.379, memory: 6815, loss_rpn_cls: 0.0147, loss_rpn_bbox: 0.0038, s0.loss_cls: 0.1754, s0.acc: 95.2148, s0.loss_bbox: 0.0510, s1.loss_cls: 0.1072, s1.acc: 94.8242, s1.loss_bbox: 0.0667, s2.loss_cls: 0.0534, s2.acc: 95.3613, s2.loss_bbox: 0.0462, loss: 0.5184 2022-12-05 15:51:57,241 - mmdet - INFO - Epoch [32][2/4] lr: 2.657e-05, eta: 0:00:16, time: 0.355, data_time: 0.081, memory: 6815, loss_rpn_cls: 0.0164, loss_rpn_bbox: 0.0093, s0.loss_cls: 0.1573, s0.acc: 97.2168, s0.loss_bbox: 0.0251, s1.loss_cls: 0.0945, s1.acc: 96.5820, s1.loss_bbox: 0.0308, s2.loss_cls: 0.0503, s2.acc: 96.5820, s2.loss_bbox: 0.0219, loss: 0.4058 2022-12-05 15:51:57,597 - mmdet - INFO - Epoch [32][3/4] lr: 2.407e-05, eta: 0:00:15, time: 0.359, data_time: 0.041, memory: 6815, loss_rpn_cls: 0.0127, loss_rpn_bbox: 0.0060, s0.loss_cls: 0.2491, s0.acc: 92.3340, s0.loss_bbox: 0.0753, s1.loss_cls: 0.1594, s1.acc: 91.5039, s1.loss_bbox: 0.0861, s2.loss_cls: 0.0825, s2.acc: 92.2852, s2.loss_bbox: 0.0472, loss: 0.7183 2022-12-05 15:51:57,976 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:51:57,976 - mmdet - INFO - Epoch [32][4/4] lr: 2.168e-05, eta: 0:00:14, time: 0.343, data_time: 0.038, memory: 6815, loss_rpn_cls: 0.0050, loss_rpn_bbox: 0.0053, s0.loss_cls: 0.0746, s0.acc: 97.6562, s0.loss_bbox: 0.0344, s1.loss_cls: 0.0545, s1.acc: 97.6562, s1.loss_bbox: 0.0190, s2.loss_cls: 0.0318, s2.acc: 97.5098, s2.loss_bbox: 0.0092, loss: 0.2338 2022-12-05 15:51:58,062 - mmdet - INFO - Saving checkpoint at 32 epochs [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 16.9 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:52:00,425 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:52:00,439 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.011 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.024 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.004 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.020 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.275 2022-12-05 15:52:00,439 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:00,439 - mmdet - INFO - Epoch(val) [32][13] bbox_mAP: 0.0110, bbox_mAP_50: 0.0240, bbox_mAP_75: 0.0040, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0200, bbox_mAP_copypaste: 0.011 0.024 0.004 -1.000 0.000 0.020 Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:52:08,097 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:08,097 - mmdet - INFO - Epoch(val) [32][4] loss_rpn_cls: 0.0293, loss_rpn_bbox: 0.0088, s0.loss_cls: 0.1947, s0.acc: 95.7886, s0.loss_bbox: 0.0578, s1.loss_cls: 0.1077, s1.acc: 95.7886, s1.loss_bbox: 0.0552, s2.loss_cls: 0.0488, s2.acc: 96.5454, s2.loss_bbox: 0.0322, loss: 0.5344 2022-12-05 15:52:10,854 - mmdet - INFO - Epoch [33][1/4] lr: 1.938e-05, eta: 0:00:14, time: 2.717, data_time: 2.326, memory: 6815, loss_rpn_cls: 0.0204, loss_rpn_bbox: 0.0091, s0.loss_cls: 0.2099, s0.acc: 94.6777, s0.loss_bbox: 0.0590, s1.loss_cls: 0.1213, s1.acc: 94.4824, s1.loss_bbox: 0.0654, s2.loss_cls: 0.0629, s2.acc: 95.2637, s2.loss_bbox: 0.0343, loss: 0.5823 2022-12-05 15:52:11,230 - mmdet - INFO - Epoch [33][2/4] lr: 1.719e-05, eta: 0:00:13, time: 0.379, data_time: 0.048, memory: 6815, loss_rpn_cls: 0.0101, loss_rpn_bbox: 0.0048, s0.loss_cls: 0.0743, s0.acc: 97.6562, s0.loss_bbox: 0.0365, s1.loss_cls: 0.0556, s1.acc: 97.6074, s1.loss_bbox: 0.0256, s2.loss_cls: 0.0313, s2.acc: 97.6074, s2.loss_bbox: 0.0124, loss: 0.2506 2022-12-05 15:52:11,631 - mmdet - INFO - Epoch [33][3/4] lr: 1.511e-05, eta: 0:00:12, time: 0.358, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0157, loss_rpn_bbox: 0.0086, s0.loss_cls: 0.2130, s0.acc: 94.1895, s0.loss_bbox: 0.0677, s1.loss_cls: 0.1320, s1.acc: 93.6035, s1.loss_bbox: 0.0709, s2.loss_cls: 0.0671, s2.acc: 94.5312, s2.loss_bbox: 0.0341, loss: 0.6090 2022-12-05 15:52:11,914 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:11,914 - mmdet - INFO - Epoch [33][4/4] lr: 1.315e-05, eta: 0:00:11, time: 0.326, data_time: 0.085, memory: 6815, loss_rpn_cls: 0.0121, loss_rpn_bbox: 0.0066, s0.loss_cls: 0.2169, s0.acc: 94.1895, s0.loss_bbox: 0.0483, s1.loss_cls: 0.1413, s1.acc: 92.9199, s1.loss_bbox: 0.0520, s2.loss_cls: 0.0762, s2.acc: 92.7734, s2.loss_bbox: 0.0376, loss: 0.5911 2022-12-05 15:52:15,136 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:15,136 - mmdet - INFO - Epoch(val) [33][4] loss_rpn_cls: 0.0285, loss_rpn_bbox: 0.0092, s0.loss_cls: 0.2004, s0.acc: 95.6299, s0.loss_bbox: 0.0589, s1.loss_cls: 0.1126, s1.acc: 95.6055, s1.loss_bbox: 0.0621, s2.loss_cls: 0.0497, s2.acc: 96.4600, s2.loss_bbox: 0.0342, loss: 0.5558 2022-12-05 15:52:17,892 - mmdet - INFO - Epoch [34][1/4] lr: 1.130e-05, eta: 0:00:10, time: 2.712, data_time: 2.354, memory: 6815, loss_rpn_cls: 0.0210, loss_rpn_bbox: 0.0075, s0.loss_cls: 0.1938, s0.acc: 95.1172, s0.loss_bbox: 0.0416, s1.loss_cls: 0.1225, s1.acc: 94.3359, s1.loss_bbox: 0.0612, s2.loss_cls: 0.0657, s2.acc: 94.5801, s2.loss_bbox: 0.0439, loss: 0.5573 2022-12-05 15:52:18,271 - mmdet - INFO - Epoch [34][2/4] lr: 9.581e-06, eta: 0:00:09, time: 0.384, data_time: 0.044, memory: 6815, loss_rpn_cls: 0.0059, loss_rpn_bbox: 0.0047, s0.loss_cls: 0.0750, s0.acc: 97.6562, s0.loss_bbox: 0.0364, s1.loss_cls: 0.0550, s1.acc: 97.6562, s1.loss_bbox: 0.0234, s2.loss_cls: 0.0283, s2.acc: 97.9004, s2.loss_bbox: 0.0097, loss: 0.2384 2022-12-05 15:52:18,576 - mmdet - INFO - Epoch [34][3/4] lr: 7.989e-06, eta: 0:00:08, time: 0.296, data_time: 0.038, memory: 6815, loss_rpn_cls: 0.0102, loss_rpn_bbox: 0.0051, s0.loss_cls: 0.1444, s0.acc: 96.5332, s0.loss_bbox: 0.0379, s1.loss_cls: 0.0896, s1.acc: 96.0449, s1.loss_bbox: 0.0524, s2.loss_cls: 0.0403, s2.acc: 97.0215, s2.loss_bbox: 0.0183, loss: 0.3982 2022-12-05 15:52:18,930 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:18,931 - mmdet - INFO - Epoch [34][4/4] lr: 6.529e-06, eta: 0:00:07, time: 0.358, data_time: 0.047, memory: 6815, loss_rpn_cls: 0.0084, loss_rpn_bbox: 0.0049, s0.loss_cls: 0.2162, s0.acc: 93.6523, s0.loss_bbox: 0.0654, s1.loss_cls: 0.1320, s1.acc: 93.1641, s1.loss_bbox: 0.0639, s2.loss_cls: 0.0669, s2.acc: 94.0430, s2.loss_bbox: 0.0273, loss: 0.5850 2022-12-05 15:52:22,292 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:22,292 - mmdet - INFO - Epoch(val) [34][4] loss_rpn_cls: 0.0291, loss_rpn_bbox: 0.0088, s0.loss_cls: 0.2241, s0.acc: 95.0317, s0.loss_bbox: 0.0713, s1.loss_cls: 0.1263, s1.acc: 95.0195, s1.loss_bbox: 0.0725, s2.loss_cls: 0.0513, s2.acc: 96.4111, s2.loss_bbox: 0.0336, loss: 0.6171 2022-12-05 15:52:25,051 - mmdet - INFO - Epoch [35][1/4] lr: 5.206e-06, eta: 0:00:06, time: 2.697, data_time: 2.322, memory: 6815, loss_rpn_cls: 0.0038, loss_rpn_bbox: 0.0047, s0.loss_cls: 0.0743, s0.acc: 97.6562, s0.loss_bbox: 0.0363, s1.loss_cls: 0.0537, s1.acc: 97.7051, s1.loss_bbox: 0.0249, s2.loss_cls: 0.0286, s2.acc: 97.8516, s2.loss_bbox: 0.0100, loss: 0.2364 2022-12-05 15:52:25,360 - mmdet - INFO - Epoch [35][2/4] lr: 4.024e-06, eta: 0:00:05, time: 0.332, data_time: 0.063, memory: 6815, loss_rpn_cls: 0.0126, loss_rpn_bbox: 0.0047, s0.loss_cls: 0.1713, s0.acc: 95.6055, s0.loss_bbox: 0.0356, s1.loss_cls: 0.1038, s1.acc: 95.1660, s1.loss_bbox: 0.0554, s2.loss_cls: 0.0515, s2.acc: 95.7520, s2.loss_bbox: 0.0383, loss: 0.4733 2022-12-05 15:52:25,711 - mmdet - INFO - Epoch [35][3/4] lr: 2.987e-06, eta: 0:00:04, time: 0.353, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0097, loss_rpn_bbox: 0.0083, s0.loss_cls: 0.1730, s0.acc: 96.0938, s0.loss_bbox: 0.0408, s1.loss_cls: 0.1016, s1.acc: 95.7520, s1.loss_bbox: 0.0357, s2.loss_cls: 0.0551, s2.acc: 95.5566, s2.loss_bbox: 0.0234, loss: 0.4475 2022-12-05 15:52:25,985 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:25,985 - mmdet - INFO - Epoch [35][4/4] lr: 2.099e-06, eta: 0:00:03, time: 0.274, data_time: 0.039, memory: 6815, loss_rpn_cls: 0.0086, loss_rpn_bbox: 0.0107, s0.loss_cls: 0.2343, s0.acc: 93.4082, s0.loss_bbox: 0.0707, s1.loss_cls: 0.1417, s1.acc: 92.7734, s1.loss_bbox: 0.0655, s2.loss_cls: 0.0745, s2.acc: 93.3105, s2.loss_bbox: 0.0336, loss: 0.6396 2022-12-05 15:52:29,382 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:29,383 - mmdet - INFO - Epoch(val) [35][4] loss_rpn_cls: 0.0241, loss_rpn_bbox: 0.0079, s0.loss_cls: 0.2056, s0.acc: 95.4712, s0.loss_bbox: 0.0622, s1.loss_cls: 0.1157, s1.acc: 95.4224, s1.loss_bbox: 0.0659, s2.loss_cls: 0.0493, s2.acc: 96.4966, s2.loss_bbox: 0.0325, loss: 0.5631 2022-12-05 15:52:32,136 - mmdet - INFO - Epoch [36][1/4] lr: 1.363e-06, eta: 0:00:02, time: 2.707, data_time: 2.360, memory: 6815, loss_rpn_cls: 0.0140, loss_rpn_bbox: 0.0076, s0.loss_cls: 0.2066, s0.acc: 94.7266, s0.loss_bbox: 0.0488, s1.loss_cls: 0.1304, s1.acc: 93.8477, s1.loss_bbox: 0.0621, s2.loss_cls: 0.0727, s2.acc: 94.2871, s2.loss_bbox: 0.0355, loss: 0.5777 2022-12-05 15:52:32,523 - mmdet - INFO - Epoch [36][2/4] lr: 7.849e-07, eta: 0:00:01, time: 0.390, data_time: 0.051, memory: 6815, loss_rpn_cls: 0.0114, loss_rpn_bbox: 0.0082, s0.loss_cls: 0.2277, s0.acc: 93.8965, s0.loss_bbox: 0.0763, s1.loss_cls: 0.1298, s1.acc: 93.7988, s1.loss_bbox: 0.0745, s2.loss_cls: 0.0630, s2.acc: 94.9707, s2.loss_bbox: 0.0313, loss: 0.6221 2022-12-05 15:52:32,806 - mmdet - INFO - Epoch [36][3/4] lr: 3.672e-07, eta: 0:00:00, time: 0.289, data_time: 0.045, memory: 6815, loss_rpn_cls: 0.0017, loss_rpn_bbox: 0.0050, s0.loss_cls: 0.0744, s0.acc: 97.6562, s0.loss_bbox: 0.0352, s1.loss_cls: 0.0538, s1.acc: 97.7051, s1.loss_bbox: 0.0219, s2.loss_cls: 0.0291, s2.acc: 97.8027, s2.loss_bbox: 0.0090, loss: 0.2301 2022-12-05 15:52:33,172 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:33,172 - mmdet - INFO - Epoch [36][4/4] lr: 1.140e-07, eta: 0:00:00, time: 0.366, data_time: 0.040, memory: 6815, loss_rpn_cls: 0.0124, loss_rpn_bbox: 0.0038, s0.loss_cls: 0.1952, s0.acc: 94.7266, s0.loss_bbox: 0.0418, s1.loss_cls: 0.1295, s1.acc: 93.5547, s1.loss_bbox: 0.0518, s2.loss_cls: 0.0672, s2.acc: 93.6523, s2.loss_bbox: 0.0378, loss: 0.5396 2022-12-05 15:52:33,255 - mmdet - INFO - Saving checkpoint at 36 epochs [>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 13/13, 15.7 task/s, elapsed: 1s, ETA: 0s2022-12-05 15:52:35,972 - mmdet - INFO - Evaluating bbox... Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:52:35,986 - mmdet - INFO - Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.011 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=1000 ] = 0.024 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=1000 ] = 0.004 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.020 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=300 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=1000 ] = 0.183 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=1000 ] = -1.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=1000 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=1000 ] = 0.275 2022-12-05 15:52:35,987 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:35,987 - mmdet - INFO - Epoch(val) [36][13] bbox_mAP: 0.0110, bbox_mAP_50: 0.0240, bbox_mAP_75: 0.0040, bbox_mAP_s: -1.0000, bbox_mAP_m: 0.0000, bbox_mAP_l: 0.0200, bbox_mAP_copypaste: 0.011 0.024 0.004 -1.000 0.000 0.020 Loading and preparing results... DONE (t=0.00s) creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.00s). Accumulating evaluation results... DONE (t=0.01s). 2022-12-05 15:52:43,714 - mmdet - INFO - Exp name: cascade_rcnn_r50_fpn_1x_coco.py 2022-12-05 15:52:43,716 - mmdet - INFO - Epoch(val) [36][4] loss_rpn_cls: 0.0342, loss_rpn_bbox: 0.0095, s0.loss_cls: 0.2102, s0.acc: 95.3979, s0.loss_bbox: 0.0675, s1.loss_cls: 0.1184, s1.acc: 95.3857, s1.loss_bbox: 0.0645, s2.loss_cls: 0.0515, s2.acc: 96.3501, s2.loss_bbox: 0.0344, loss: 0.5902
wandb: Waiting for W&B process to finish... (success). wandb: wandb: Run history: wandb: learning_rate ▁▂▂▃▄▄▅▅▆▆▇▇▇████████▇▇▇▆▆▆▅▅▄▄▃▃▂▂▂▁▁▁▁ wandb: momentum ▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: train/loss ▇█▇▇▆▅▅▃▃▃▁▁▂▂▂▂▁▁▂▂▂▂▂▂▂▂▁▂▁▂▁▂▁▂▁▁▂▂▂▂ wandb: train/loss_rpn_bbox ▂▆▃▃▃▂█▂▆▇▃▃▂▂▄▅▃▂▅▂▄▃▄▂▅▃▂▄▂▄▂▄▃▂▄▂▂▂▄▁ wandb: train/loss_rpn_cls ▁▄▁▁▁▁█▁▆▆▁▁▂▂▂▂▁▁▂▁▂▂▂▂▁▂▁▁▁▂▁▁▂▁▂▁▁▁▁▁ wandb: train/s0.acc ▂▁▃▅████████████████████████████████████ wandb: train/s0.loss_bbox ▆▅▇▆▆▆▂▆▅▃▃▃▆▅▇▆▃▁▃▂██▃▂▇▅▁▆▁▂▂▄▂▆▁▂▃▅▅▃ wandb: train/s0.loss_cls ██▇▇▆▅▅▃▃▂▁▁▂▂▂▂▁▁▂▂▂▂▁▁▂▂▁▂▁▁▁▂▁▂▁▁▂▂▂▂ wandb: train/s1.acc ▁▁▂▃▆████████████████▇███████████▇██████ wandb: train/s1.loss_bbox ▂▄▁▁▁▁▂▂▃▁▁▁▅▄█▆▂▂▃▃▇▇▄▅▆▆▂▇▂▃▁▅▃▇▂▁▄▅▅▄ wandb: train/s1.loss_cls ███▇▇▆▆▄▃▃▂▁▂▁▂▂▁▁▁▁▂▂▁▁▂▂▁▂▁▁▁▁▁▂▁▁▂▂▂▂ wandb: train/s2.acc ▁▁▁▂▅▇██████████████████████████████████ wandb: train/s2.loss_bbox ▁▃▁▁▁▂▂▂▃▂▁▁▄▃▆▃▁▃▄▄▄▅▃▄▄▆▁▅▁▅▁▅▄█▃▂▅▄▅▅ wandb: train/s2.loss_cls ███▇▇▆▅▄▄▃▂▁▂▁▂▂▁▁▁▁▂▂▁▁▂▂▁▂▁▁▁▂▁▂▁▁▂▂▂▂ wandb: val/bbox_mAP ▂█▆▁▂▄▇▇▇ wandb: val/bbox_mAP_50 ▁█▅▁▂▄▆▆▆ wandb: val/bbox_mAP_75 ▇██▁▁▁▅▇▇ wandb: val/bbox_mAP_l ▂█▆▁▁▂▄▅▅ wandb: val/bbox_mAP_m ▁▁▁▁▁▁▁▁▁ wandb: val/bbox_mAP_s ▁▁▁▁▁▁▁▁▁ wandb: val/loss ██▇▅▄▃▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: val/loss_rpn_bbox ▄▇▅█▆▆▅▆▇█▆▃▃▃▄▄▇▃▃▆▄▄▁▃▄▃▁ wandb: val/loss_rpn_cls ▅▇▅█▆▃▅▃▄▄▄▂▁▂▁▂▃▃▂▃▂▃▂▁▂▂▁ wandb: val/s0.acc ▁▂▅████████████████████████ wandb: val/s0.loss_bbox ▅▅▆▁▄▆▆█▂▄▃▆▆▃▄▅▃▅▅▅▁▃▅▄▃▆▄ wandb: val/s0.loss_cls ██▇▅▄▃▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: val/s1.acc ▁▂▃████████████████████████ wandb: val/s1.loss_bbox █▄▅▂▅▆▆▆▄▆▄▅█▅▇▇▂▇▄▁▁▃▅▅▃▅▄ wandb: val/s1.loss_cls ██▇▅▄▄▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: val/s2.acc ▁▁▃████████████████████████ wandb: val/s2.loss_bbox ▇▄▅▁▅▅▅▆▃▆▃▅█▅▅▆▂▄▃▁▁▃▃▅▄▄▃ wandb: val/s2.loss_cls ██▇▆▅▄▂▂▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁▁ wandb: wandb: Run summary: wandb: learning_rate 0.0 wandb: momentum 0.9 wandb: train/loss 0.53957 wandb: train/loss_rpn_bbox 0.00381 wandb: train/loss_rpn_cls 0.01236 wandb: train/s0.acc 94.72656 wandb: train/s0.loss_bbox 0.04182 wandb: train/s0.loss_cls 0.19517 wandb: train/s1.acc 93.55469 wandb: train/s1.loss_bbox 0.05181 wandb: train/s1.loss_cls 0.12954 wandb: train/s2.acc 93.65234 wandb: train/s2.loss_bbox 0.03782 wandb: train/s2.loss_cls 0.06725 wandb: val/bbox_mAP 0.011 wandb: val/bbox_mAP_50 0.024 wandb: val/bbox_mAP_75 0.004 wandb: val/bbox_mAP_l 0.02 wandb: val/bbox_mAP_m 0.0 wandb: val/bbox_mAP_s -1.0 wandb: val/loss 0.56313 wandb: val/loss_rpn_bbox 0.00792 wandb: val/loss_rpn_cls 0.02405 wandb: val/s0.acc 95.47119 wandb: val/s0.loss_bbox 0.06216 wandb: val/s0.loss_cls 0.20561 wandb: val/s1.acc 95.42236 wandb: val/s1.loss_bbox 0.0659 wandb: val/s1.loss_cls 0.11573 wandb: val/s2.acc 96.49658 wandb: val/s2.loss_bbox 0.0325 wandb: val/s2.loss_cls 0.04927 wandb:
Learning_rate (학습률, η , eta)
training 되는 양 또는 단계, 오류의 양을 추정,
미분 기울기의 이동 step
– lr값이 작다 = 기울기의 이동 step의 간격이 작아진다 = 학습속도가 느리다
= 학습의 반복수가적을 경우 Minima에 도달전에 끝날수 있음 = cost 값의 변화가 없는 경우
– lr값이 크다 = 기울기의 이동 step의 간격이 커진다 = 너무 값이 커지면 반대쪽 그래프로 이동하여 그래프를 벗어나는 결과 값을 도출될 수 있음(overshooting)
딥러닝 NN (Neural Networks)은 학습과정(weight를 조정하는 과정)에서 SGD알고리즘을 사용한다.
SGD(Stochastic gradient descent)는 Loss함수계산시 전체데이터(Batch)대신 일부데이터(Mini-Batch)를 사용하여
계산속도향상, 메모리부족해결한 알고리즘.
이를 여러번 수행하면 BGD (Batch gradient descent)로 수렴한고, 오히려 Local Minima에 빠지지 않고 더 좋은 방향으로 Global Minima에 수렴하는데 도움이 된다.
변형 알고리즘으로 Navice SGD, Momentum, NAG, Adagrad, AdaDelta, RMSprop등이 있다.
이런 SGD에서 가중치를 업데이트할때 사용되는 기준점 중 하나가 Learning rate이다.
정확한 기준점을 알고 있어야 정확도를 높일 수가 있다.
https://wandb.ai/onesixx/kaggle_cowboy_outfits/runs/25x8bwd3
wandb: Synced exp-cascade_rcnn_r50_fpn_1x-job16: https://wandb.ai/onesixx/kaggle_cowboy_outfits/runs/25x8bwd3 wandb: Synced 6 W&B file(s), 0 media file(s), 25 artifact file(s) and 1 other file(s) wandb: Find logs at: ./wandb/run-20221205_154726-25x8bwd3/logs
train.py
# Copyright (c) OpenMMLab. All rights reserved. import argparse, copy, time, warnings import os, os.path as osp import torch import torch.distributed as dist import mmcv from mmcv import Config, DictAction from mmcv.runner import get_dist_info, init_dist from mmcv.utils import get_git_hash from mmdet import __version__ from mmdet.apis import init_random_seed, set_random_seed, train_detector from mmdet.datasets import build_dataset from mmdet.models import build_detector from mmdet.utils import (collect_env, get_device, get_root_logger, replace_cfg_vals, setup_multi_processes, update_data_root) def parse_args(): parser = argparse.ArgumentParser(description='Train a detector') parser.add_argument('config', help='train config file path') parser.add_argument('--work-dir', help='the dir to save logs and models') parser.add_argument('--resume-from', help='the checkpoint file to resume from') parser.add_argument('--auto-resume', action='store_true', help='resume from the latest checkpoint automatically') parser.add_argument('--no-validate', action='store_true', help='whether not to evaluate the checkpoint during training') group_gpus = parser.add_mutually_exclusive_group() group_gpus.add_argument('--gpus', type=int, help='(Deprecated, please use --gpu-id) number of gpus to use (only applicable to non-distributed training)') group_gpus.add_argument('--gpu-ids',type=int, nargs='+', help='(Deprecated, please use --gpu-id) ids of gpus to use (only applicable to non-distributed training)') group_gpus.add_argument('--gpu-id', type=int, default=0, help='id of gpu to use (only applicable to non-distributed training)') parser.add_argument('--seed', type=int, default=None, help='random seed') parser.add_argument('--diff-seed', action='store_true', help='Whether or not set different seeds for different ranks') parser.add_argument('--deterministic', action='store_true', help='whether to set deterministic options for CUDNN backend.') parser.add_argument('--options', nargs='+', action=DictAction,help='override some settings in the used config, the key-value pair in xxx=yyy format will be merged into config file (deprecate), change to --cfg-options instead.') parser.add_argument('--cfg-options', nargs='+', action=DictAction, help='override some settings in the used config, the key-value pair ' 'in xxx=yyy format will be merged into config file. If the value to ' 'be overwritten is a list, it should be like key="[a,b]" or key=a,b ' 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" ' 'Note that the quotation marks are necessary and that no white space is allowed.') parser.add_argument('--launcher', choices=['none', 'pytorch', 'slurm', 'mpi'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) parser.add_argument('--auto-scale-lr', action='store_true', help='enable automatically scaling LR.') args = parser.parse_args() if 'LOCAL_RANK' not in os.environ: os.environ['LOCAL_RANK'] = str(args.local_rank) if args.options and args.cfg_options: raise ValueError( '--options and --cfg-options cannot be both ' 'specified, --options is deprecated in favor of --cfg-options') if args.options: warnings.warn('--options is deprecated in favor of --cfg-options') args.cfg_options = args.options return args def main(): args = parse_args() cfg = Config.fromfile(args.config) cfg = replace_cfg_vals(cfg) # replace the ${key} with the value of cfg.key update_data_root(cfg) # update data root according to MMDET_DATASETS if args.cfg_options is not None: cfg.merge_from_dict(args.cfg_options) if args.auto_scale_lr: if 'auto_scale_lr' in cfg and \\ 'enable' in cfg.auto_scale_lr and 'base_batch_size' in cfg.auto_scale_lr: cfg.auto_scale_lr.enable = True else: warnings.warn('Can not find "auto_scale_lr" or "auto_scale_lr.enable" or "auto_scale_lr.base_batch_size" in your configuration file. ' 'Please update all the configuration files to mmdet >= 2.24.1.') # set multi-process settings setup_multi_processes(cfg) # set cudnn_benchmark if cfg.get('cudnn_benchmark', False): torch.backends.cudnn.benchmark = True # work_dir is determined in this priority: CLI > segment in file > filename if args.work_dir is not None: # update configs according to CLI args if args.work_dir is not None cfg.work_dir = args.work_dir elif cfg.get('work_dir', None) is None: # use config filename as default work_dir if cfg.work_dir is None cfg.work_dir = osp.join('./work_dirs', osp.splitext(osp.basename(args.config))[0]) if args.resume_from is not None: cfg.resume_from = args.resume_from cfg.auto_resume = args.auto_resume if args.gpus is not None: cfg.gpu_ids = range(1) warnings.warn('`--gpus` is deprecated because we only support single GPU mode in non-distributed training. Use `gpus=1` now.') if args.gpu_ids is not None: cfg.gpu_ids = args.gpu_ids[0:1] warnings.warn('`--gpu-ids` is deprecated, please use `--gpu-id`. Because we only support single GPU mode in non-distributed training. Use the first GPU in `gpu_ids` now.') if args.gpus is None and args.gpu_ids is None: cfg.gpu_ids = [args.gpu_id] # init distributed env first, since logger depends on the dist info. if args.launcher == 'none': distributed = False else: distributed = True init_dist(args.launcher, **cfg.dist_params) # re-set gpu_ids with distributed training mode _, world_size = get_dist_info() cfg.gpu_ids = range(world_size) # create work_dir mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir)) # dump config cfg.dump(osp.join(cfg.work_dir, osp.basename(args.config))) # init the logger before other steps timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime()) log_file = osp.join(cfg.work_dir, f'{timestamp}.log') logger = get_root_logger(log_file=log_file, log_level=cfg.log_level) # init the meta dict to record some important information such as # environment info and seed, which will be logged meta = dict() # log env info env_info_dict = collect_env() env_info = '\ '.join([(f'{k}: {v}') for k, v in env_info_dict.items()]) dash_line = '-' * 60 + '\ ' logger.info('Environment info:\ ' + dash_line + env_info + '\ ' + dash_line) meta['env_info'] = env_info meta['config'] = cfg.pretty_text # log some basic info logger.info(f'Distributed training: {distributed}') logger.info(f'Config:\ {cfg.pretty_text}') cfg.device = get_device() # set random seeds seed = init_random_seed(args.seed, device=cfg.device) seed = seed + dist.get_rank() if args.diff_seed else seed logger.info(f'Set random seed to {seed}, deterministic: {args.deterministic}') set_random_seed(seed, deterministic=args.deterministic) cfg.seed = seed meta['seed'] = seed meta['exp_name'] = osp.basename(args.config) model = build_detector(cfg.model, train_cfg=cfg.get('train_cfg'), test_cfg=cfg.get('test_cfg')) model.init_weights() datasets = [build_dataset(cfg.data.train)] if len(cfg.workflow) == 2: assert 'val' in [mode for (mode, _) in cfg.workflow] val_dataset = copy.deepcopy(cfg.data.val) val_dataset.pipeline = cfg.data.train.get( 'pipeline', cfg.data.train.dataset.get('pipeline')) datasets.append(build_dataset(val_dataset)) if cfg.checkpoint_config is not None: # save mmdet version, config file content and class names in # checkpoints as meta data cfg.checkpoint_config.meta = dict( mmdet_version=__version__ + get_git_hash()[:7], CLASSES=datasets[0].CLASSES) # add an attribute for visualization convenience model.CLASSES = datasets[0].CLASSES train_detector( model, datasets, cfg, distributed=distributed, validate=(not args.no_validate), timestamp=timestamp, meta=meta) if __name__ == '__main__': main()