mmdet 1: Learn about Configs

Published onesixx on

TUTORIAL 1: LEARN ABOUT CONFIGS

config파일은 모듈화되어 있어 여러 config 조각을 합쳐서 사용한다.

완성된 하나의 config 파일 보고 싶다면,  python tools/misc/print_config.py /PATH/TO/CONFIG  를 활용한다.

명령창에서 스크립트의 argument를 통해 config 수정

Read More…

When submitting jobs using “tools/train.py” or “tools/test.py”,
you may specify --cfg-options to in-place modify the config.

  • dict chains의 (config) key를 업데이트.
    Update config keys of dict chains.
    The config options can be specified following the order of the dict keys in the original config.
    예> --cfg-options model.backbone.norm_eval=False
     changes the all BN modules in model backbones to train mode.
  • config파일(config의 List)내에서 key 업데이트
    Update keys inside a list of configs.
    Some config dicts are composed as a list in your config.
    예> the training pipeline data.train.pipeline is normally a list
    e.g. [dict(type='LoadImageFromFile'), ...].
    If you want to change 'LoadImageFromFile' to 'LoadImageFromWebcam' in the pipeline,
    you may specify 
    --cfg-options data.train.pipeline.0.type=LoadImageFromWebcam.
  • Update values of list/tuples. If the value to be updated is a list or a tuple.
    예> the config file normally sets workflow=[('train', 1)].
    If you want to change this key, you may specify --cfg-options workflow="[(train,1),(val,1)]".
    Note that the quotation mark ” is necessary to support list/tuple data types, and that NO white space is allowed inside the quotation marks in the specified value.

Config File 구조

config/_base_, 아래 4개의 기본 component 타입으로 이뤄져 있음.

  • dataset
  • model
  • schedule
  • default_runtime.

Many methods could be easily constructed with one of each like Faster R-CNN, Mask R-CNN, Cascade R-CNN, RPN, SSD.
The configs that are composed by components from _base_ are called primitive.

For all configs under the same folder, it is recommended to have only one primitive config.
All other configs should inherit from the primitive config. In this way, the maximum of inheritance level is 3.

For easy understanding, we recommend contributors to inherit from existing methods.

예> if some modification is made base on Faster R-CNN, user may first inherit the basic Faster R-CNN structure by specifying _base_ = ../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py, then modify the necessary fields in the config files.

If you are building an entirely new method that does not share the structure with any of the existing methods, you may create a folder xxx_rcnn under configs,

Please refer to mmcv for detailed documentation.

Config Name Style

We follow the below style to name config files. Contributors are advised to follow the same style.

{model}_[model setting]_ {backbone}_{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_{schedule}_{dataset}

{model}_[model setting]_
{backbone}_
{neck}_[norm setting]_[misc]_[gpu x batch_per_gpu]_
{schedule}_
{dataset}

{xxx} is required field and [yyy] is optional.

  • {model}: model type like faster_rcnnmask_rcnn, etc.
  • [model setting]: specific setting for some model, like without_semantic for htcmoment for reppoints, etc.
  • {backbone}: backbone type like r50 (ResNet-50), x101 (ResNeXt-101).
  • {neck}: neck type like fpnpafpnnasfpnc4.
  • [norm_setting]
    bn (Batch Normalization) is used unless specified,
    gn (Group Normalization), 
    syncbn (Synchronized Batch Normalization). gn-head/gn-neck indicates GN is applied in head/neck only, while gn-all means GN is applied in the entire model, e.g. backbone, neck, head.
  • [misc]: miscellaneous setting/plugins of model, e.g. dconvgcbattentionalbumstrain.
  • [gpu x batch_per_gpu]: GPUs and samples per GPU, 8x2 is used by default.
  • {schedule}: training schedule, options are 1x2x20e, etc. 
    1x and 2x means 12 epochs and 24 epochs respectively. 
    20e is adopted in cascade models, which denotes 20 epochs.
    For 1x/2x, initial learning rate decays by a factor of 10 at the 8/16th and 11/22th epochs. For 20e, initial learning rate decays by a factor of 10 at the 16th and 19th epochs.
  • {dataset}: dataset like cococityscapesvoc_0712wider_face.

예)

faster_rcnn_r50_fpn_1x_coco

  • model : faster_rcnn
  • backbone : ResNet 50
  • neck : fpn
  • schedule : 1x (12 epochs)
  • dataset : coco

cascade_mask_rcnn_convnext-s_p4_w7_fpn_giou_4conv1f_fp16_ms-crop_3x_coco

  • model : cascade_mask_rcnn
  • backbone : convnext-s (small)
    • : p4_w7
  • neck : fpn
  • misc : giou_4conv1f_fp16_ms-crop
  • schedule : 3x (36 epochs)
  • dataset : coco

Deprecated train_cfg/test_cfg

Read More…

The train_cfg and test_cfg are deprecated in config file, please specify them in the model config.
The original config structure is as below.

# deprecated
model = dict(
   type=...,
   ...
)
train_cfg=dict(...)
test_cfg=dict(...)

The migration example is as below.

# recommended
model = dict(
   type=...,
   ...
   train_cfg=dict(...),
   test_cfg=dict(...),
)

An Example of Mask R-CNN

To help the users have a basic idea of a complete config and the modules in a modern detection system, we make brief comments on the config of Mask R-CNN using ResNet50 and FPN as the following.

For more detailed usage and the corresponding alternative for each modules, please refer to the API documentation.

Python

FAQ

Ignore some fields in the base configs

Sometimes, you may set _delete_=True to ignore some of fields in base configs.
You may refer to mmcv for simple illustration.

In MMDetection, for example, to change the backbone of Mask R-CNN with the following config.

model = dict(
    type='MaskRCNN',
    pretrained='torchvision://resnet50',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch'),
    neck=dict(...),
    rpn_head=dict(...),
    roi_head=dict(...))

ResNet and HRNet use different keywords to construct.

_base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
model = dict(
    pretrained='open-mmlab://msra/hrnetv2_w32',
    backbone=dict(
        _delete_=True,
        type='HRNet',
        extra=dict(
            stage1=dict(
                num_modules=1,
                num_branches=1,
                block='BOTTLENECK',
                num_blocks=(4, ),
                num_channels=(64, )),
            stage2=dict(
                num_modules=1,
                num_branches=2,
                block='BASIC',
                num_blocks=(4, 4),
                num_channels=(32, 64)),
            stage3=dict(
                num_modules=4,
                num_branches=3,
                block='BASIC',
                num_blocks=(4, 4, 4),
                num_channels=(32, 64, 128)),
            stage4=dict(
                num_modules=3,
                num_branches=4,
                block='BASIC',
                num_blocks=(4, 4, 4, 4),
                num_channels=(32, 64, 128, 256)))),
    neck=dict(...))

The _delete_=True would replace all old keys in backbone field with new keys.

Use intermediate variables in configs

Some intermediate variables are used in the configs files, like train_pipeline/test_pipeline in datasets. It’s worth noting that when modifying intermediate variables in the children configs, user need to pass the intermediate variables into corresponding fields again. For example, we would like to use multi scale strategy to train a Mask R-CNN. train_pipeline/test_pipeline are intermediate variable we would like modify.

_base_ = './mask_rcnn_r50_fpn_1x_coco.py'

img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='Resize',
        img_scale=[(1333, 640), (1333, 672), (1333, 704), (1333, 736),
                   (1333, 768), (1333, 800)],
        multiscale_mode="value",
        keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))

We first define the new train_pipeline/test_pipeline and pass them into data.

Similarly, if we would like to switch from SyncBN to BN or MMSyncBN, we need to substitute every norm_cfg in the config.

_base_ = './mask_rcnn_r50_fpn_1x_coco.py'
norm_cfg = dict(type='BN', requires_grad=True)
model = dict(
    backbone=dict(norm_cfg=norm_cfg),
    neck=dict(norm_cfg=norm_cfg),
    ...)
Categories: vision

onesixx

Blog Owner

guest

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x