mmclass…
mmclassification tutorial colab
mmclassification/docs/en/getting_started.md
데이터셋 준비
https://mmclassification.readthedocs.io/en/latest/getting_started.html#prepare-datasets
... dataset_type = 'MCSPilot' CLASSES = ['Normal','Alarm'] DATA_ROOT='/raid/templates/msc_pilot/images' #'data/imagenet', ...
~/my/git/msc/ mmclassification/mmcls/datasets/init.py 에 등록
... __all__ = [ 'BaseDataset', 'ImageNet', 'CIFAR10', 'CIFAR100', 'MNIST', ..... 'CustomDataset', 'MCSPilot' ]
dataset (middleformat을 위한 def load_annotations())
~/my/git/msc/ mmclassification/mmcls/datasets/sixx/mydataset.py
~/my/git/msc/ mmclassification/mmcls/datasets/sixx/mscpilot.py
(openmmlab)$ pwd /home/oschung_skcc/my/git/msc/mmclassification/configs/swin_transformer (openmmlab)$ cp ./swin_small_224_b16x64_300e_imagenet.py ../sixx
config 준비
configs/swin_transformer/
(openmmlab)$ pwd /home/oschung_skcc/my/git/msc/mmclassification/configs/swin_transformer (openmmlab)$ cp ./swin_small_224_b16x64_300e_imagenet.py ../sixx
base를 보면서…
base = ‘swin-small_16xb64_in1k.py’
/home/htkim2_skcc/git/mmclassification/configs/swin_transformer/swin-small_16xb64_in1k.py
model, datasets, schedules(pipeline), runtime
base = [
‘../base/models/swin_transformer/small_224.py’,
‘../base/datasets/imagenet_bs64_swin_224.py’,
‘../base/schedules/imagenet_bs1024_adamw_swin.py’,
‘../base/default_runtime.py’
]
데모
mmclassification/docs/en/tutorials/MMClassification_python.ipynb
inference
python tools/train.py configs/swin_transformer/kht_swin_small_224_b16x64_300e_imagenet.py