LAB1
library(tensorflow) # Check TF version names(tf) tf$VERSION ################################################## # Hello ################################################## # This op is added as a node to the default graph hello <- tf$constant("Hello, TensorFlow!") # Create a constant op sess <- tf$Session() # start a TF session print(sess$run(hello)) # run the op and get result ################################################## # Tensors ################################################# c(3) # a rank 0 tensor; this is a scalar with shape [] c(1., 2., 3.) # a rank 1 tensor; this is a vector with shape [3] c(c(1., 2., 3.), c(4., 5., 6.)) # a rank 2 tensor; a matrix with shape [2, 3] c(c(c(1., 2., 3.)), c(c(7., 8., 9.))) # a rank 3 tensor with shape [2, 1, 3] node1 <- tf$constant(3.0, tf$float32) node2 <- tf$constant(4.0) # also tf.float32 implicitly node3 <- tf$add(node1, node2) print(paste("node1:", node1)) print(paste("node2:", node2)) print(paste("node3:", node3)) sess <- tf$Session() print(paste("sess.run(node1, node2): ", sess$run(c(node1, node2)))) print(paste("sess.run(node3): ", sess$run(node3))) a <- tf$placeholder(tf$float32) b <- tf$placeholder(tf$float32) adder_node <- a + b # + provides a shortcut for tf.add(a, b) cat(sess$run(adder_node, feed_dict=dict(a= 3, b=4.5) ) ) cat(sess$run(adder_node, feed_dict=dict(a=c(1,3), b=c(2,4) ) ))