Keras 설치

Published by onesixx on

https://appsilon.com/ship-recognition-in-satellite-imagery-part-i/
https://appsilon.com/ship-recognition-in-satellite-imagery-part-ii/
Posted by Michal Maj  16 January, 2018
install.packages("keras")
#also installing the dependencies ‘config’, ‘reticulate’, ‘tensorflow’, ‘tfruns’

GPU version

GPU를 사용하기 위해서,

 library(keras)
 install_keras(tensorflow = "gpu") # GPU version
#install_keras()                    # CPU version

별도의 Python 가상환경이 설치되어 있지 않다면, miniconda를 설치여부를 결정하도록 한다.

> install_keras(tensorflow="gpu")
Using virtual environment '~/.virtualenvs/r-reticulate' ...
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support
'
Collecting tensorflow-gpu==1.14.0					Downloading https://files.pythonhosted.org/packages/41/6d/2348df00a34baaabdef0fdb4f46f962f7a8a6720362c26c3a44a249767ea/tensorflow_gpu-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl (377.0MB)
Collecting tensorflow-hub							Using cached https://files.pythonhosted.org/packages/ac/64/3bba86ca49ef21a4add11a4d37e3f6cd05d2e61d207ebe26a8a96b340826/tensorflow_hub-0.6.0-py2.py3-none-any.whl
Collecting tensorflow-probability					Using cached https://files.pythonhosted.org/packages/3e/3a/c10b6c22320531c774402ac7186d1b673374e2a9d12502cbc8d811e4601c/tensorflow_probability-0.7.0-py2.py3-none-any.whl
Collecting keras									Downloading https://files.pythonhosted.org/packages/1b/18/2e1ef121e5560ac24c7ac9e363aa5fa7006c40563c989e7211aba95b793a/Keras-2.3.0-py2.py3-none-any.whl (377kB)
Collecting absl-py>=0.7.0 (from tensorflow-gpu==1.14.0)	
Collecting wrapt>=1.11.1 (from tensorflow-gpu==1.14.0)
Collecting protobuf>=3.6.1 (from tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/c7/60/19c2c3b563c8a5ebbc5f17982fd794f415cfc4633a8248ab3e23a47662bc/protobuf-3.9.1-cp27-cp27mu-manylinux1_x86_64.whl
Collecting keras-preprocessing>=1.0.5 (from tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/28/6a/8c1f62c37212d9fc441a7e26736df51ce6f0e38455816445471f10da4f0a/Keras_Preprocessing-1.1.0-py2.py3-none-any.whl
Collecting gast>=0.2.0 (from tensorflow-gpu==1.14.0)		Downloading https://files.pythonhosted.org/packages/1f/04/4e36c33f8eb5c5b6c622a1f4859352a6acca7ab387257d4b3c191d23ec1d/gast-0.3.2.tar.gz
Collecting enum34>=1.1.6 (from tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/c5/db/e56e6b4bbac7c4a06de1c50de6fe1ef3810018ae11732a50f15f62c7d050/enum34-1.1.6-py2-none-any.whl
Collecting astor>=0.6.0 (from tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/d1/4f/950dfae467b384fc96bc6469de25d832534f6b4441033c39f914efd13418/astor-0.8.0-py2.py3-none-any.whl
Collecting six>=1.10.0 (from tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl
Collecting tensorboard<1.15.0,>=1.14.0 (from tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/f4/37/e6a7af1c92c5b68fb427f853b06164b56ea92126bcfd87784334ec5e4d42/tensorboard-1.14.0-py2-none-any.whl
Collecting numpy<2.0,>=1.14.5 (from tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/d7/b1/3367ea1f372957f97a6752ec725b87886e12af1415216feec9067e31df70/numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl
Collecting tensorflow-estimator<1.15.0rc0,>=1.14.0rc0 (from tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/3c/d5/21860a5b11caf0678fbc8319341b0ae21a07156911132e0e71bffed0510d/tensorflow_estimator-1.14.0-py2.py3-none-any.whl
Collecting mock>=2.0.0 (from tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/05/d2/f94e68be6b17f46d2c353564da56e6fb89ef09faeeff3313a046cb810ca9/mock-3.0.5-py2.py3-none-any.whl
Collecting google-pasta>=0.1.6 (from tensorflow-gpu==1.14.0)			Using cached https://files.pythonhosted.org/packages/35/95/d41cd87d147742ef72d5d1dc317318486e3fbffdadf24a60e70dedf01d56/google_pasta-0.1.7-py2-none-any.whl
Collecting backports.weakref>=1.0rc1 (from tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/88/ec/f598b633c3d5ffe267aaada57d961c94fdfa183c5c3ebda2b6d151943db6/backports.weakref-1.0.post1-py2.py3-none-any.whl
Collecting termcolor>=1.1.0 (from tensorflow-gpu==1.14.0)	
Collecting grpcio>=1.8.6 (from tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/d6/c3/65db90ec27181edf491c26aa998ae631e50cd1f04ee8d8d513a95e3937f3/grpcio-1.23.0-cp27-cp27mu-manylinux1_x86_64.whl
Collecting wheel (from tensorflow-gpu==1.14.0)				Using cached https://files.pythonhosted.org/packages/00/83/b4a77d044e78ad1a45610eb88f745be2fd2c6d658f9798a15e384b7d57c9/wheel-0.33.6-py2.py3-none-any.whl
Collecting keras-applications>=1.0.6 (from tensorflow-gpu==1.14.0)		
Collecting cloudpickle>=0.6.1 (from tensorflow-probability)	Downloading https://files.pythonhosted.org/packages/c1/49/334e279caa3231255725c8e860fa93e72083567625573421db8875846c14/cloudpickle-1.2.2-py2.py3-none-any.whl
Collecting decorator (from tensorflow-probability)			Using cached https://files.pythonhosted.org/packages/5f/88/0075e461560a1e750a0dcbf77f1d9de775028c37a19a346a6c565a257399/decorator-4.4.0-py2.py3-none-any.whl
Collecting scipy>=0.14 (from keras)					Using cached https://files.pythonhosted.org/packages/1d/f6/7c16d60aeb3694e5611976cb4f1eaf1c6b7f1e7c55771d691013405a02ea/scipy-1.2.2-cp27-cp27mu-manylinux1_x86_64.whl
Collecting pyyaml (from keras)
Collecting h5py (from keras)						Using cached https://files.pythonhosted.org/packages/12/90/3216b8f6d69905a320352a9ca6802a8e39fdb1cd93133c3d4163db8d5f19/h5py-2.10.0-cp27-cp27mu-manylinux1_x86_64.whl
Collecting setuptools (from protobuf>=3.6.1->tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/b2/86/095d2f7829badc207c893dd4ac767e871f6cd547145df797ea26baea4e2e/setuptools-41.2.0-py2.py3-none-any.whl
Collecting futures>=3.1.1; python_version < "3" (from tensorboard<1.15.0,>=1.14.0->tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/d8/a6/f46ae3f1da0cd4361c344888f59ec2f5785e69c872e175a748ef6071cdb5/futures-3.3.0-py2-none-any.whl
Collecting markdown>=2.6.8 (from tensorboard<1.15.0,>=1.14.0->tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/c0/4e/fd492e91abdc2d2fcb70ef453064d980688762079397f779758e055f6575/Markdown-3.1.1-py2.py3-none-any.whl
Collecting werkzeug>=0.11.15 (from tensorboard<1.15.0,>=1.14.0->tensorflow-gpu==1.14.0)		Using cached https://files.pythonhosted.org/packages/b7/61/c0a1adf9ad80db012ed7191af98fa05faa95fa09eceb71bb6fa8b66e6a43/Werkzeug-0.15.6-py2.py3-none-any.whl
Collecting funcsigs>=1; python_version < "3.3" (from mock>=2.0.0->tensorflow-gpu==1.14.0)	Using cached https://files.pythonhosted.org/packages/69/cb/f5be453359271714c01b9bd06126eaf2e368f1fddfff30818754b5ac2328/funcsigs-1.0.2-py2.py3-none-any.whl

Building wheels for collected packages: gast
  Building wheel for gast (setup.py): started
  Building wheel for gast (setup.py): finished with status 'done'
  Created wheel for gast: filename=gast-0.3.2-cp27-none-any.whl size=9678 sha256=0aefa032bbdca8e55cb00d63c4deb0b511e3b04198304652510c5f1f6919a858
  Stored in directory: /home/sixx/.cache/pip/wheels/59/38/c6/234dc39b4f6951a0768fbc02d5b7207137a5b1d9094f0d54bf
Successfully built gast

Installing collected packages: enum34, six, absl-py, wrapt, setuptools, protobuf, numpy, keras-preprocessing, gast, astor, futures, markdown, grpcio, wheel, werkzeug, tensorboard, tensorflow-estimator, funcsigs, mock, google-pasta, backports.weakref, termcolor, h5py, keras-applications, tensorflow-gpu, tensorflow-hub, cloudpickle, decorator, tensorflow-probability, scipy, pyyaml, keras
Successfully installed absl-py-0.8.0 astor-0.8.0 backports.weakref-1.0.post1 cloudpickle-1.2.2 decorator-4.4.0 enum34-1.1.6 funcsigs-1.0.2 futures-3.3.0 gast-0.3.2 google-pasta-0.1.7 grpcio-1.23.0 h5py-2.10.0 keras-2.3.0 keras-applications-1.0.8 keras-preprocessing-1.1.0 markdown-3.1.1 mock-3.0.5 numpy-1.16.5 protobuf-3.9.1 pyyaml-5.1.2 scipy-1.2.2 setuptools-41.2.0 six-1.12.0 tensorboard-1.14.0 tensorflow-estimator-1.14.0 tensorflow-gpu-1.14.0 tensorflow-hub-0.6.0 tensorflow-probability-0.7.0 termcolor-1.1.0 werkzeug-0.15.6 wheel-0.33.6 wrapt-1.11.2

Installation complete.

CPU version

Keras 패키지에서 install_keras()를 통해 설치한다.

 library(keras)
#install_keras(tensorflow = "gpu") # GPU version
 install_keras()                    # CPU version
> install_keras()      

Creating virtual environment '~/.virtualenvs/r-reticulate' ...
Using python: /usr/bin/python3.5
New python executable in /home/sixx/.virtualenvs/r-reticulate/bin/python2
Also creating executable in /home/sixx/.virtualenvs/r-reticulate/bin/python

Installing setuptools, pkg_resources, pip, wheel...done.
Running virtualenv with interpreter /usr/bin/python2
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support
Collecting pip				Using cached https://files.pythonhosted.org/packages/30/db/9e38760b32e3e7f40cce46dd5fb107b8c73840df38f0046d8e6514e675a1/pip-19.2.3-py2.py3-none-any.whl
Collecting wheel			Using cached https://files.pythonhosted.org/packages/00/83/b4a77d044e78ad1a45610eb88f745be2fd2c6d658f9798a15e384b7d57c9/wheel-0.33.6-py2.py3-none-any.whl
Collecting setuptools		Using cached https://files.pythonhosted.org/packages/b2/86/095d2f7829badc207c893dd4ac767e871f6cd547145df797ea26baea4e2e/setuptools-41.2.0-py2.py3-none-any.whl
Installing collected packages: pip, wheel, setuptools
Successfully installed pip-19.2.3 setuptools-41.2.0 wheel-0.33.6

Using virtual environment '~/.virtualenvs/r-reticulate' ...
DEPRECATION: Python 2.7 will reach the end of its life on January 1st, 2020. Please upgrade your Python as Python 2.7 won't be maintained after that date. A future version of pip will drop support for Python 2.7. More details about Python 2 support in pip, can be found at https://pip.pypa.io/en/latest/development/release-process/#python-2-support
Collecting tensorflow==1.14.0						Downloading https://files.pythonhosted.org/packages/d3/59/d88fe8c58ffb66aca21d03c0e290cd68327cc133591130c674985e98a482/tensorflow-1.14.0-cp27-cp27mu-manylinux1_x86_64.whl (109.2MB)
Collecting tensorflow-hub							Downloading https://files.pythonhosted.org/packages/ac/64/3bba86ca49ef21a4add11a4d37e3f6cd05d2e61d207ebe26a8a96b340826/tensorflow_hub-0.6.0-py2.py3-none-any.whl (84kB)
Collecting tensorflow-probability					Downloading https://files.pythonhosted.org/packages/3e/3a/c10b6c22320531c774402ac7186d1b673374e2a9d12502cbc8d811e4601c/tensorflow_probability-0.7.0-py2.py3-none-any.whl (981kB)
Collecting keras									Downloading https://files.pythonhosted.org/packages/f8/ba/2d058dcf1b85b9c212cc58264c98a4a7dd92c989b798823cc5690d062bb2/Keras-2.2.5-py2.py3-none-any.whl (336kB)
Collecting absl-py>=0.7.0 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/3c/0d/7cbf64cac3f93617a2b6b079c0182e4a83a3e7a8964d3b0cc3d9758ba002/absl-py-0.8.0.tar.gz (102kB)
Collecting wrapt>=1.11.1 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/23/84/323c2415280bc4fc880ac5050dddfb3c8062c2552b34c2e512eb4aa68f79/wrapt-1.11.2.tar.gz
Collecting protobuf>=3.6.1 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/c7/60/19c2c3b563c8a5ebbc5f17982fd794f415cfc4633a8248ab3e23a47662bc/protobuf-3.9.1-cp27-cp27mu-manylinux1_x86_64.whl (1.2MB)
Collecting keras-preprocessing>=1.0.5 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/28/6a/8c1f62c37212d9fc441a7e26736df51ce6f0e38455816445471f10da4f0a/Keras_Preprocessing-1.1.0-py2.py3-none-any.whl (41kB)
Collecting gast>=0.2.0 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/4d/17/a92e707853e2fb48aea76dcdc200ea9a2f7d1ce6d1eff07ddfcf326184cb/gast-0.3.1.tar.gz
Collecting enum34>=1.1.6 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/c5/db/e56e6b4bbac7c4a06de1c50de6fe1ef3810018ae11732a50f15f62c7d050/enum34-1.1.6-py2-none-any.whl
Collecting astor>=0.6.0 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/d1/4f/950dfae467b384fc96bc6469de25d832534f6b4441033c39f914efd13418/astor-0.8.0-py2.py3-none-any.whl
Collecting six>=1.10.0 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/73/fb/00a976f728d0d1fecfe898238ce23f502a721c0ac0ecfedb80e0d88c64e9/six-1.12.0-py2.py3-none-any.whl
Collecting tensorboard<1.15.0,>=1.14.0 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/f4/37/e6a7af1c92c5b68fb427f853b06164b56ea92126bcfd87784334ec5e4d42/tensorboard-1.14.0-py2-none-any.whl (3.1MB)
Collecting numpy<2.0,>=1.14.5 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/d7/b1/3367ea1f372957f97a6752ec725b87886e12af1415216feec9067e31df70/numpy-1.16.5-cp27-cp27mu-manylinux1_x86_64.whl (17.0MB)
Collecting tensorflow-estimator<1.15.0rc0,>=1.14.0rc0 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/3c/d5/21860a5b11caf0678fbc8319341b0ae21a07156911132e0e71bffed0510d/tensorflow_estimator-1.14.0-py2.py3-none-any.whl (488kB)
Collecting mock>=2.0.0 (from tensorflow==1.14.0) 	Downloading https://files.pythonhosted.org/packages/05/d2/f94e68be6b17f46d2c353564da56e6fb89ef09faeeff3313a046cb810ca9/mock-3.0.5-py2.py3-none-any.whl
Collecting google-pasta>=0.1.6 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/35/95/d41cd87d147742ef72d5d1dc317318486e3fbffdadf24a60e70dedf01d56/google_pasta-0.1.7-py2-none-any.whl (55kB)
Collecting backports.weakref>=1.0rc1 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/88/ec/f598b633c3d5ffe267aaada57d961c94fdfa183c5c3ebda2b6d151943db6/backports.weakref-1.0.post1-py2.py3-none-any.whl
Collecting termcolor>=1.1.0 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/8a/48/a76be51647d0eb9f10e2a4511bf3ffb8cc1e6b14e9e4fab46173aa79f981/termcolor-1.1.0.tar.gz
Collecting grpcio>=1.8.6 (from tensorflow==1.14.0)	Downloading https://files.pythonhosted.org/packages/d6/c3/65db90ec27181edf491c26aa998ae631e50cd1f04ee8d8d513a95e3937f3/grpcio-1.23.0-cp27-cp27mu-manylinux1_x86_64.whl (2.2MB)
Collecting wheel (from tensorflow==1.14.0)			Using cached https://files.pythonhosted.org/packages/00/83/b4a77d044e78ad1a45610eb88f745be2fd2c6d658f9798a15e384b7d57c9/wheel-0.33.6-py2.py3-none-any.whl
Collecting keras-applications>=1.0.6 (from tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/21/56/4bcec5a8d9503a87e58e814c4e32ac2b32c37c685672c30bc8c54c6e478a/Keras_Applications-1.0.8.tar.gz (289kB)
Collecting cloudpickle>=0.6.1 (from tensorflow-probability) Downloading https://files.pythonhosted.org/packages/09/f4/4a080c349c1680a2086196fcf0286a65931708156f39568ed7051e42ff6a/cloudpickle-1.2.1-py2.py3-none-any.whl
Collecting decorator (from tensorflow-probability) 	Downloading https://files.pythonhosted.org/packages/5f/88/0075e461560a1e750a0dcbf77f1d9de775028c37a19a346a6c565a257399/decorator-4.4.0-py2.py3-none-any.whl
Collecting scipy>=0.14 (from keras)					Downloading https://files.pythonhosted.org/packages/1d/f6/7c16d60aeb3694e5611976cb4f1eaf1c6b7f1e7c55771d691013405a02ea/scipy-1.2.2-cp27-cp27mu-manylinux1_x86_64.whl (24.8MB)
Collecting pyyaml (from keras)						Downloading https://files.pythonhosted.org/packages/e3/e8/b3212641ee2718d556df0f23f78de8303f068fe29cdaa7a91018849582fe/PyYAML-5.1.2.tar.gz (265kB)
Collecting h5py (from keras)						Downloading https://files.pythonhosted.org/packages/12/90/3216b8f6d69905a320352a9ca6802a8e39fdb1cd93133c3d4163db8d5f19/h5py-2.10.0-cp27-cp27mu-manylinux1_x86_64.whl (2.8MB)
Collecting setuptools (from protobuf>=3.6.1->tensorflow==1.14.0) Using cached https://files.pythonhosted.org/packages/b2/86/095d2f7829badc207c893dd4ac767e871f6cd547145df797ea26baea4e2e/setuptools-41.2.0-py2.py3-none-any.whl
Collecting futures>=3.1.1; python_version < "3" (from tensorboard<1.15.0,>=1.14.0->tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/d8/a6/f46ae3f1da0cd4361c344888f59ec2f5785e69c872e175a748ef6071cdb5/futures-3.3.0-py2-none-any.whl
Collecting markdown>=2.6.8 (from tensorboard<1.15.0,>=1.14.0->tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/c0/4e/fd492e91abdc2d2fcb70ef453064d980688762079397f779758e055f6575/Markdown-3.1.1-py2.py3-none-any.whl (87kB)
Collecting werkzeug>=0.11.15 (from tensorboard<1.15.0,>=1.14.0->tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/b7/61/c0a1adf9ad80db012ed7191af98fa05faa95fa09eceb71bb6fa8b66e6a43/Werkzeug-0.15.6-py2.py3-none-any.whl (328kB)
Collecting funcsigs>=1; python_version < "3.3" (from mock>=2.0.0->tensorflow==1.14.0) Downloading https://files.pythonhosted.org/packages/69/cb/f5be453359271714c01b9bd06126eaf2e368f1fddfff30818754b5ac2328/funcsigs-1.0.2-py2.py3-none-any.whl

Building wheels for collected packages: absl-py, wrapt, gast, termcolor, keras-applications, pyyaml
...
Successfully built absl-py wrapt gast termcolor keras-applications pyyaml

Installing collected packages: six, enum34, absl-py, wrapt, setuptools, protobuf, numpy, keras-preprocessing, gast, astor, futures, markdown, grpcio, wheel, werkzeug, tensorboard, tensorflow-estimator, funcsigs, mock, google-pasta, backports.weakref, termcolor, h5py, keras-applications, tensorflow, tensorflow-hub, cloudpickle, decorator, tensorflow-probability, scipy, pyyaml, keras
Successfully installed absl-py-0.8.0 astor-0.8.0 backports.weakref-1.0.post1 cloudpickle-1.2.1 decorator-4.4.0 enum34-1.1.6 funcsigs-1.0.2 futures-3.3.0 gast-0.3.1 google-pasta-0.1.7 grpcio-1.23.0 h5py-2.10.0 keras-2.2.5 keras-applications-1.0.8 keras-preprocessing-1.1.0 markdown-3.1.1 mock-3.0.5 numpy-1.16.5 protobuf-3.9.1 pyyaml-5.1.2 scipy-1.2.2 setuptools-41.2.0 six-1.12.0 tensorboard-1.14.0 tensorflow-1.14.0 tensorflow-estimator-1.14.0 tensorflow-hub-0.6.0 tensorflow-probability-0.7.0 termcolor-1.1.0 werkzeug-0.15.6 wheel-0.33.6 wrapt-1.11.2

Installation complete.

설치시 에러 처리 (for mac)

The script wheel is installed in ‘/Users/onesixx/.virtualenvs/r-reticulate/bin’ which is not on PATH.

...
Building wheel for h5py (setup.py): started
Building wheel for h5py (setup.py): finished with status 'error'
ERROR: Complete output from command /usr/local/opt/python/bin/python3.7 -u -c 'import setuptools, tokenize;__file__='"'"'/private/var/folders/8t/_3rhwzhn4rxfb0mq0_cnxxd00000gn/T/pip-install-7sqq82cs/h5py/setup.py'"'"';f=getattr(tokenize, '"'"'open'"'"', open)(__file__);code=f.read().replace('"'"'\\r\
'"'"', '"'"'\
'"'"');f.close();exec(compile(code, __file__, '"'"'exec'"'"'))' bdist_wheel -d /private/var/folders/8t/_3rhwzhn4rxfb0mq0_cnxxd00000gn/T/pip-wheel-9s_6ot3y --python-tag cp37:
ERROR: running bdist_wheel
...

HDF5(Hierarchical Data Format) for Python — The h5py package is a Pythonic interface to the HDF5 binary data format. 

~|➜ brew install hdf5

GPU 설치전 사전 진행사항

https://www.cyberciti.biz/faq/linux-tell-which-graphics-vga-card-installed/
https://www.tensorflow.org/install/source#linux

Hardware requirements

NVIDIA® GPU card with CUDA® Compute Capability 3.5 or higher.
CUDA-enabled GPU cards에서 확인

ex> GeForce GTX 1080 / 8GB

설치된 GPU 확인

GPU Hardware 확인 (by PCI 아이템 리스트)

pci 리스트를 업데이트하고, 리스트를 읽어서 VGA compatible controller를 찾아보면,

$ sudo update-pciids
Downloaded daily snapshot dated 2019-09-14 03:15:02

$ lspci -v | less
또는 간단하게 찾기 위해 
$ lspci | grep -i --color 'vga\\|3d\\|2d'
02:00.0 VGA compatible controller: NVIDIA Corporation GP104 [GeForce GTX 1080] (rev a1) (prog-if 00 [VGA controller])

$ sudo lshw -C display
$ sudo lshw -short | grep -i --color display
/0/100/3/0                     display     GP104 [GeForce GTX 1080]

찾은 GPU의 ID를 이용해서, 해당 카드의 세부정보를 찾아보면,

$ sudo lspci -v -s 02:00.0
02:00.0 VGA compatible controller: NVIDIA Corporation GP104 [GeForce GTX 1080] (rev a1) (prog-if 00 [VGA controller])
        Subsystem: Micro-Star International Co., Ltd. [MSI] Device 3367
        Physical Slot: 1
        Flags: bus master, fast devsel, latency 0, IRQ 26
        Memory at fa000000 (32-bit, non-prefetchable) [size=16M]
        Memory at e0000000 (64-bit, prefetchable) [size=256M]
        Memory at f0000000 (64-bit, prefetchable) [size=32M]
        I/O ports at e000 [size=128]
        [virtual] Expansion ROM at 000c0000 [disabled] [size=128K]

        Capabilities: [60] Power Management version 3
        Capabilities: [68] MSI: Enable- Count=1/1 Maskable- 64bit+
        Capabilities: [78] Express Legacy Endpoint, MSI 00
        Capabilities: [100] Virtual Channel
        Capabilities: [250] Latency Tolerance Reporting
        Capabilities: [128] Power Budgeting 
        Capabilities: [420] Advanced Error Reporting
        Capabilities: [600] Vendor Specific Information: ID=0001 Rev=1 Len=024 
        Capabilities: [900] #19

        Kernel driver in use: nvidia
        Kernel modules: nvidiafb, nouveau, nvidia_430_drm, nvidia_430

GPU driver 확인

$ ubuntu-drivers devices
== /sys/devices/pci0000:00/0000:00:03.0/0000:02:00.0 ==
vendor   : NVIDIA Corporation
modalias : pci:v000010DEd00001B80sv00001462sd00003367bc03sc00i00
driver   : nvidia-418 - third-party non-free
driver   : nvidia-387 - third-party non-free
driver   : nvidia-415 - third-party free
driver   : nvidia-410 - third-party non-free
driver   : nvidia-430 - third-party free recommended
...
$ cat /proc/driver/nvidia/version
NVRM version: NVIDIA UNIX x86_64 Kernel Module  430.26  Tue Jun  4 17:40:52 CDT 2019
GCC version:  gcc version 5.4.0 20160609 (Ubuntu 5.4.0-6ubuntu1~16.04.10)

Software requirements

Tutorial: GeForce GTX 1080Ti GPU NVIDIA Driver Installation in Ubuntu 18.04 (2019)
https://www.tensorflow.org/install/gpu#ubuntu_1604_cuda_10

ex> UBUNTU 16.04 , CUDA 10.0

1. Nvidia GPU driver 설치 (재설치/Upgrade)

1. 설치된 이전 NVIDIA 드라이버 제거

$ sudo apt-get purge nvidia*

2. repository PPA (Personal Package Archives) 추가후, apt 업데이트

$ sudo add-apt-repository ppa:graphics-drivers/ppa
$ sudo apt-get update

3. NVIDIA 관련 드라이버 확인후, 적합한 NVIDIA driver 와 setting확인툴 설치후,
적용을 위해 Reboot . (추천 버전은 nvidia-driver-418)

$ sudo apt-get install nvidia-{TAB} 으로 확인
#$ sudo apt-get install nvidia-430 nvidia-settings
$ sudo apt-get install nvidia-418 nvidia-settings

$ sudo reboot

4. 드라이버 설치 확인하고, 드라이버의 상세정보 확인

$ nvidia-smi
Mon Sep 16 15:51:33 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 430.26       Driver Version: 430.26       CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce GTX 1080    Off  | 00000000:02:00.0 Off |                  N/A |
|  0%   46C    P5    34W / 240W |      0MiB /  8118MiB |      3%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
cat /proc/driver/nvidia/gpus/{tab}/information
$ cat /proc/driver/nvidia/gpus/0000\\:02\\:00.0/information
Model:           GeForce GTX 1080
IRQ:             68
GPU UUID:        GPU-9efb87f2-c84d-9a34-85ae-8c38b9798eb8
Video BIOS:      86.04.17.00.51
Bus Type:        PCIe
DMA Size:        47 bits
DMA Mask:        0x7fffffffffff
Bus Location:    0000:02:00.0
Device Minor:    0
Blacklisted:     No

2. CUDA 관련 설치 (CUDA Toolkit/ CUPTI/cuDNN/ TensorRT)

  • CUDA® Toolkit —TensorFlow supports CUDA 10.0 (TensorFlow >= 1.13.0)
https://tensorflow.rstudio.com/tools/local_gpu.html
https://www.tensorflow.org/install/install_linux#nvidia_requirements_to_run_tensorflow_with_gpu_support

현재 CUDA 설치 확인

$ dpkg -l | grep cuda-repo-ubuntu1604
ii  cuda-repo-ubuntu1604     10.1.243-1      amd64        cuda repository configuration files

Downgrade cuda 10.1 to 10.0

만약 버전이 10.0이 아인면, downgrade.
TensorFlow 최신버전이 아직 CUDA 10.1을 지원하지 않는다.

https://www.tensorflow.org/install/gpu
$ sudo apt-get --purge remove "cuda*"
$ sudo reboot

NVIDIA CUDA network repository installation package 설치

$ sudo apt-get install gnupg-curl
$ wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/cuda-repo-ubuntu1804_10.0.130-1_amd64.deb
$ sudo dpkg -i cuda-repo-ubuntu1804_10.0.130-1_amd64.deb

Add HTTPS support for apt-key

$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1604/x86_64/7fa2af80.pub
$ sudo apt-get update

NVIDIA Machine Learning network repository 설치

$ wget http://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
$ sudo apt install ./nvidia-machine-learning-repo-ubuntu1604_1.0.0-1_amd64.deb
$ sudo apt-get update

CUDA Toolkit v10.0 와 CUPTI, cuDNN v7.x 설치

CUDA Toolkit을 설치한다.
CUPTI(CUDA Profiling Tools Interface)는 CUDA Toolkit 설치시 같이 설치되고, Nvidia Driver도 설치된다.
cuDNN(CUDA® Deep Neural Network library)

$ sudo apt-get install --no-install-recommends \\
     cuda-10-0 \\
     libcudnn7=7.6.2.24-1+cuda10.0  \\
     libcudnn7-dev=7.6.2.24-1+cuda10.0

TensorRT 설치

위에서 libcudnn7 가 제대로 설치된 후, TensorRT설치한다.

$ sudo apt-get install --no-install-recommends \\
     libnvinfer5=5.1.5-1+cuda10.0 \\
     libnvinfer-dev=5.1.5-1+cuda10.0

환경변수 정의 – ENVIRONMENT VARIABLES

  • CUDA HOME
  • CUDA binary 와 CUPTI 의 binary 경로
  • PATH 추가

기본

$ sudo apt-get install --no-install-recommends \\
     libnvinfer5=5.1.5-1+cuda10.0 \\
     libnvinfer-dev=5.1.5-1+cuda10.0

RStudio Server – MULTI-USER

기본적으로 bash startup file (/etc/profile) 에 정의하여 모든 사용자에 동일하게 적용해야하지만,
RStudio Server를 활용하는 경우, RStudioServer가 R 세션에 대해 system profile 스크립트를 실행하지 않기 때문에, RStudio 설정파일(/etc/rstudio/rserver.conf )에 라이브러리경로를 정의한다.

$ sudo vi /etc/rstudio/rserver.conf

# Server Configuration File
rsession-ld-library-path=/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64

CUDA Home과 PATH 는 /usr/lib/R/etc/Rprofile.site 활용

$ sudo vi /usr/lib/R/etc/Rprofile.site

Sys.setenv(CUDA_HOME="/usr/local/cuda")
Sys.setenv(PATH=paste(Sys.getenv("PATH"), "/usr/local/cuda/bin", sep = ":"))

* TensorFlow 설치 for all user  multi-user installation 섹션 참고

SINGLE-USER

기본적으로 bash startup file ( ~/.profile) 에 정의한고, 적용을 위해 reboot한다.
(물론  ~/.bash_profile 이나 ~/.bash_login  이 있으면 ~/.profile을 읽지 않기 때문에 해당 파일이 있는지도 확인해야한다.  ~/.bashrc 류는 Terminal 세션만 적용되지만, ~/.profile은 desktop application(RStudio)까지 읽어서 사용하므로 ~/.profile을 사용한다.)

$ sudo vi ~/.profile

# Server Configuration File
rsession-ld-library-path=/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64

CUDA Home과 PATH 는 ~/.Rprofile 활용

$ sudo vi ~/.Rprofile

Sys.setenv(CUDA_HOME="/usr/local/cuda")
Sys.setenv(PATH=paste(Sys.getenv("PATH"), "/usr/local/cuda/bin", sep = ":"))

* <참고> 설치 packages

cuda-10-0
cuda-command-line-tools-10-0
cuda-compiler-10-0
cuda-cublas-10-0
cuda-cublas-dev-10-0
cuda-cudart-10-0
cuda-cudart-dev-10-0
cuda-cufft-10-0
cuda-cufft-dev-10-0
cuda-cuobjdump-10-0
cuda-cupti-10-0
cuda-curand-10-0
cuda-curand-dev-10-0
cuda-cusolver-10-0
cuda-cusolver-dev-10-0
cuda-cusparse-10-0
cuda-cusparse-dev-10-0
cuda-demo-suite-10-0
cuda-documentation-10-0

cuda-driver-dev-10-0
cuda-drivers 418.87.00-1

cuda-gdb-10-0
cuda-gpu-library-advisor-10-0
cuda-libraries-10-0
cuda-libraries-dev-10-0
cuda-license-10-0
cuda-memcheck-10-0
cuda-misc-headers-10-0
cuda-npp-10-0
cuda-npp-dev-10-0
cuda-nsight-10-0
cuda-nsight-compute-10-0
cuda-nvcc-10-0
cuda-nvdisasm-10-0
cuda-nvgraph-10-0
cuda-nvgraph-dev-10-0
cuda-nvjpeg-10-0
cuda-nvjpeg-dev-10-0
cuda-nvml-dev-10-0
cuda-nvprof-10-0
cuda-nvprune-10-0
cuda-nvrtc-10-0
cuda-nvrtc-dev-10-0
cuda-nvtx-10-0
cuda-nvvp-10-0
cuda-runtime-10-0
cuda-samples-10-0
cuda-toolkit-10-0
cuda-tools-10-0
cuda-visual-tools-10-0

libcuda1-418
nvidia-418
nvidia-418-dev
nvidia-modprobe
nvidia-opencl-icd-418
nvidia-settings

libcudnn7 7.6.2.24-1+cuda10.0
libcudnn7-dev 7.6.2.24-1+cuda10.0
Categories: DeepLearning

onesixx

Blog Owner

Subscribe
Notify of
guest

0 Comments
Inline Feedbacks
View all comments
0
Would love your thoughts, please comment.x
()
x