pandas to_dict
df.to_dict(‘dict’, list,
‘split , ‘index’, ‘series’, ‘records’)
txt="John,20,student\ Jenny,30,developer\ Nate,30,teacher\ Julia,40,dentist\ Brian,45,manager\ Chris,25,intern\ " # name,age,job # John,20,student # Jenny,30,developer # Nate,30,teacher # Julia,40,dentist # Brian,45,manager # Chris,25,intern import pandas as pd from io import StringIO df = pd.read_csv(StringIO(txt), header=None) df.columns=['name','age','job']
[colNm for colNm in df] # ['name', 'age', 'job']
import pandas as pd
data ='https://raw.githubusercontent.com/plotly/datasets/master/gapminder2007.csv'
df = pd.read_csv(data)
df.shape # rows × columns (142, 5)
df.shape[0] # rows
len(df)
len(df.index)
df.shape[1]
len(df.columns) # columms
df.size # cell 갯수 710
df.count() # Null아닌 열별 행갯수
df.to_dict() # type은 dict (row번호)
len(df.to_dict()) # 5
df.to_dict('list') # type은 dict
len(df.to_dict('list')) # 5
df.to_dict('split') # type은 dict
len(df.to_dict('split')) # 3, index, columns, data
df.to_dict('index') # type은 dict
len(df.to_dict('index')) # 142
df.to_dict('records') # type은 list
len(df.to_dict('records')) # 142
dff =df[0:2]
# country\t pop\t continent\tlifeExp\t gdpPercap
# 0\tAfghanistan\t31889923.0\tAsia \t43.828\t 974.580338
# 1\tAlbania\t 3600523.0\tEurope\t 76.423\t5937.029526
dff.shape
#(2,5)
dff.size
# 10
dff.count() # Null아닌 열별 행갯수
# country 2
# pop 2
# continent 2
# lifeExp 2
# gdpPercap 2
# dtype: int64
dff.to_dict()
# {'country': {0: 'Afghanistan', 1: 'Albania'},
# 'pop': {0: 31889923.0, 1: 3600523.0},
# 'continent': {0: 'Asia', 1: 'Europe'},
# 'lifeExp': {0: 43.828, 1: 76.423},
# 'gdpPercap': {0: 974.5803384, 1: 5937.029525999999}}
dff.to_dict('list')
# {'country': ['Afghanistan', 'Albania'],
# 'pop': [31889923.0, 3600523.0],
# 'continent': ['Asia', 'Europe'],
# 'lifeExp': [43.828, 76.423],
# 'gdpPercap': [974.5803384, 5937.029525999999]}
dff.to_dict('records')
# [{'country': 'Afghanistan',
# 'pop': 31889923.0,
# 'continent': 'Asia',
# 'lifeExp': 43.828,
# 'gdpPercap': 974.5803384},
# {'country': 'Albania',
# 'pop': 3600523.0,
# 'continent': 'Europe',
# 'lifeExp': 76.423,
# 'gdpPercap': 5937.029525999999}]